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ABSTRACT 

N 
This work begins with _a study of individual decision-making 

under uncertainty^ a probleiri^which we formulate as 

(l)      Maximize f(x,ß)  subject to g.(x,ß) > 0,  1=1, 
x 

where x is a decision n-vector, Iß    is a b-vector of exogenous 

variables and parameters of the decision model,  f is an objective 

function to be maximized, and t 

which determine the set of feasible decisions.  The source of uncer- 

tainty is  ß,  which is^known only to lie in a given set  B.  We 

also consider the-'tfase in which a probability distribution over B 

e.  are constraint functions 

is giy 

Several methods for circumventing uncertainty in the constraints 

are briefly reviewed, and several decision criteria for circumventing 

uncertainty in the objective function are discussed.  Particular 

attention is devoted to the demonstration of certain relationships 

between these criteria.  It is concluded that vector maximum reformu- 

lations -6f-(-l-)- play a prominent role in dealing with uncertainty in 

such decision problems. 

A vector maximum problem is of the form 

"Maximize" ^(x), ... , fr(x) 

(2) 
subject to g.(x) > 0,  i = 1, . . . , m 

The quotation marks signify that it is desired to find all efficient 



decisions, i.e., all decision vectors satisfying the constraints 

such that it is impossible to achieve an increase in any one objective 

function without violating the constraints or decreasing at least 

one of the other objective functions.  In Chapter II we discuss two 

methods for transforming a vector maximum problem into an equivalent 

parametric programming problem.  Existing computational methods for 

the latter problems are briefly surveyed. 

The principal contribution of this work is presented In Chapter III: 

a class of algorithms for solving parametric concave programming 

problems of the form 

Maximize of (x) + (l-a)f (x) 

(3) ^ 

subject to g.(x) > 0,     1 = 1, ... , m 

for each fixed value of a In the closed interval [0,1], where 

f.  (l = 1,2)  are strictly concave functions, g.  (l = 1,...,m) 

are concave functions, and certain additional regularity assumptions 

are made.  Under these assumptions it is shown that (2) (with r = 2) 

and (5) are equivalent in the sense that x  is efficient in (2) 

if and only if x  solves (3) for  some value of a    in the unit 

interval.  The present class of algorithms is not "simplex-like" 

or "gradient" In nature, but proceeds by maintaining a solution of 

the Kuhn-Tucker Conditions as a    varies by small increments (under 

our assumptions these conditions are necessary and sufficient for 

an optimal solution of (3))•     The main algorithm given herein displays 

quadratic convergence at each increment of a.     A simple modification 

for handling linear equality constraints is indicated. 

■..'■ 



Problem (3) also subsumes the standard (non-parametric) concave 

programming problem when a feasible solution is known.  Thus the 

present algorithms provide a deformation method of concave programming 

Since many of the results of this chapter hold for much more general 

parametric problems than (3).» moreover, the present algorithms are 

pertinent to sensitivity analysis applications. 

The final chapter presents a numerical example which illustrates 

the solution of a decision problem under uncertainty by means of the 

techniques discussed in the preceding chapters. 
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Notation 

x s (x^,...,*:^) is a decision vector in En (n-dimensional Euclidean 

space), and is under the control of the decision-maker 

ß - (ß^-■• jß^) is an uncertain vector in E representing exogenous 

variables and model parameters, and is not under the control 

of the decision-maker 

f^'ß) is a real-valued criterion function which is to be maximized; 

if there is no dependence on ß, we write f(x); if there 

are several criterion functions, we write f(x)  for 

v"l (f (x),...,f (x)) 

g(x,ß) s (g1(x,ß),. . . ^(xjß))  is a real vector-valued constraint 

function; if there is no dependence on ß,     we write g(x) 

{z e Z:  z has property P] denotes the set of all elements z 

in the set  Z which have property P;  when Z is omitted, 

it is implicitly understood to be the pertinent universal 

set 

X is a subset of E  consisting of the feasible decisions; often 

X represents  Cx:  g(x) > 0) 

B  (in Chapter l) is a subset of  E  which is known to contain the 

"true realization" of ß 

x> (>) _0  signifies x. > (>) 0  (i = l,...,n) 



> 0 signifies x > 0 "but x ^ 2 

[i    denotes a probability distribution over B 

C C(O) D signifies that the set C is a (proper) subset of D 

Nr(x0)  ^h = 
'   n pi1/2        1 o y)    (x.-x?) < rl j     an open neighborhood of    x 

of radius     r 

F(a)  denotes the maximum a-fractile criterion (see problem (^.5) 

of Chapter l) 

A(M)  denotes the aspiration criterion with aspiration level M 

(see problem {h.6)   of Chapter l) 

[a,b) = [t e E1:  a < t < b] 

(la.)     denotes the parametric programming problem considered in 

Chapter III; the parameter a may vary in this notation 

(there is no relation between this usage of a and that 

of Chapter l) 

f(xja) =af.,(x) + (i-oOf (x) 

Vx
fw = ( Of(x) öf(x) 

ÖX 
-'  I ,  the gradient of f(x) 

S  denotes a subset of constraint indices;  S C M,  where M is 

the set of the first m positive integers 

U = (u ....,u )  denotes the dual variables associated with the 
—  v 1     m 

Kuhn-Tucker conditions 



(KT-l),...,(KT-4)  are, collectively, one version of the Kuhn- 

Tucker conditions associated with (Po;) 

(=S)Q: is a more complete notation for the equations (KT-l) and 

(KT-2);  S and a may vary in this notation 

(x*"(Q!), u*(a))  is the optimal solution and dual variables of (PC«) 

as functions of a 

a      o 
(x (a), u (a))  is a solution of (=s)a as a function of a 

\J  f(x)  denotes the matrix of second partial derivatives (i.e., the 

hessian) of  f(x) 

<x > -► x  means that the (infinite) sequence x ,x ,...,x ,... 

4-      0 

converges to x 

C-D denotes the points in the set  C which are not in the set D 

Aa = {i e M:  u*(a) > 0},  the set of active constraints at a;  0! 

may vary in this notation 

BO! = {i e M:  g.(x*(o!)) = 0),  the set of binding constraints at 

x*(a);  o; may vary in this notation 

a', (j = l,...,N)  are the points of change of Aa    or of Ba in the 
J 

unit interval; a'     is a generic term for a point of change 

a'+ is an arbitrary point strictly between two points of change 

la' = [a'-i, a'+i],  where i  is defined immediately above Theorem k.2, 

Chapter III 



CHAPTER I 

On the Relevance of the Vector Maximum 

Problem to Decision-Making Under Uncertainty 

1.   Introduction 

This chapter addresses a problem of individual decision-making 

under uncertainty of the form 

(l) Maximize  f(x,ß)  subject to g(x,ß) ^_0 , 
x 

where x= (x.,.,...,x )  is the decision vector,  ß= (ß , ...,ß )  is 

a vector of exogenous variables and parameters of the model,  f is 

the objective (or criterion or payoff) function to be maximized, 

and g = (g1,...,s )  is a vector-valued constraint function which 

determines the set of feasible decisions.  We assume that the functions 

f and g are known, but that ß is known only to lie in a given 

set B C E , where E  is b-dimensional Euclidean space.  Often 

we shall make the additional assumption that  ß may be regarded as 

a random variable with a known probability distribution over B. 

A choice of x must be made before ß is found out, if, indeed, 

it ever is revealed to the decision-maker.  Throughout this chapter, 

no experimentation is permitted in order to reduce uncertainty about 

s- 
If ß were known exactly, then (l) would be a well-defined 

problem (providing that the desired maximum exists, of course). 

But we have assumed that ß  is uncertain, and so (l) is not well-defined. 



There are two distinct aspects of the difficulties arising from 

uncertainty in ß:  the set of feasible decisions is uncertain, and 

the objective function is uncertain.  Maximization cannot be performed 

until the constraints and objective function are reformulated so as 

to be independent of ß.  We shall discuss a variety of such reformu- 

lations, and it will be seen that quite frequently vector maximum 

reformulations play a prominent role. 

The Vector Maximum Problem 

A vector maximum problem arises whenever there is more than one 

objective function to be extremized.  Consider the problem 

(2) "Maximize"  f(x) , 
x e X 

where f(x) ^ (f (x),...,fr(x))  is a vector-valued objective function 

(each component of f represents an objective, usually non-additive 

with the others, which the decision-maker wants to maximize), and 

X CZ En is a set of feasible decisions.  In the fortunate event that 

each component of the objective function reaches its maximum simul- 

taneously, as in Figure 1, then (2) is said to have a perfect solution. 

In general, however, an improvement of one objective beyond a certain 

point can only be obtained at the expense of worsening another. 

Suppose that for a feasible decision x0 there exists no other feasible 

decision x1  such that^'  f (x1) > f (x0) • "^^    ^     is terlned an 

—' In this work we adopt the convention that x > 0 signifies 

x. >0(i=l,...,n),  x>0  signifies xi > 0 (l = 1,...,n)  and 

x > 0 for at least one  1,  and x > 0  signifies x > 0 (i = 1, 
1 _  _ X 

,n) 

■     .■■■■...■■ , 



efficient solution-^ of (2).  The quotation marks in (2) signify 

that it is desired to find all efficient solutions.  When they are 

all found, the vector maximum problem (2) has been solved. 

When f has only two or three components, we envision determining 

the entire set of efficient solutions and presenting the corresponding 

outcomes in graphical form to the decision-maker, who would then 

subjectively determine a trade-off between conflicting objectives 

and thus make the final selection of a decision.  Figures 1 and 2 

illustrate the graph of attainable outcomes for two hypothetical cases 

involving two objective functions.  The efficient outcomes are denoted 

by the heavy line and dot. 

^KBp' 

f2(x) 

Figure 1 

attainable 
outcomes 

-9*-  f1(^) f^x) 

Figure 2 

In many applied decision problems, even in the absence of uncer- 

tainty, there are several objective functions which naturally present 

themselves to the decision-maker.  In such situations, the relevance 

—' The notion of an efficient solution is essentially the same as 
the notion of "undominated" or "admissible" decisions in decision 
theory, and the notion of "Pareto optimality" In game theory (see 
Luce and Raiffa, 1957, P- 28? and p. 118). 

■ ■■'.■ '■■■■  ■■ ■,.: 



of the vector maximum problem is obvious, and need not be emphasized 

further.  What we do wish to emphasize is that in the presence of 

uncertainty even a single-criterion-function problem such as (l), 

which we would accept as the "correct" formulation if ß were known 

exactly, tends to explode into vector maximum reformulations when 

one attempts to turn it into a well-defined problem. 

Plan of Discussion 

Because uncertainty in the constraints is fundamentally different 

from uncertainty in the objective function of (l), we split our dis- 

cussion Into two parts:  in section 2 we consider ways of reformulating 

the constraints so as to be independent of ß,     and in section 5 we 

consider ways of reformulating the objective function so as to be 

independent of ß  (this is usually known as invoking a decision 

criterion).  These two steps must be accomplished in order to convert 

(l) into a well-defined problem.  The conversion usually can be 

accomplished in several ways, reflecting various compromises which 

may be made to uncertainty in ß,  realism in the final model, and 

computational considerations. 

In section 2, three reformulations of the constraints will be 

discussed: permanent feasibility, the penalty function reformulation, 

and probabilistic constraints.  The first two do not require a proba- 

bility distribution over B,  while the last does.  The last two 

reformulations sometimes lead to a vector maximum problem. 

In section 3 we consider several decision criteria, and some 

relations between them are noted.  We suggest that a given decision 

| 



■ ■ . .  ■■..: 

'S 

'9 problem should be attacked by several decision criteria rather than 

by only one.  The result is, of course, a vector maximum problem.  Two 

examples are presented which demonstrate the usefulness of considering 

two criteria simultaneously. The second example is a one-period 

inventory model, and an argument is given for deviating from the 

now classical solution. 

2.   Treating Uncertainty in the Feasibility Constraints 

This section is essentially a review of some of the existing 

ways of circumventing uncertainty in the constraints, and is included 

mainly for completeness.  Mixtures and variations of these basic 

approaches can be improvised to cover most particular applications. 

The Permanent Feasibility Reformulation 

To be absolutely sure of choosing a feasible decision, choice 

must be limited to those values of x which are feasible for all 

ß e B.  That is, restrict attention to the seW  |  J (x:  g(xj.ß) > 0} 
- ß e B _ 

(see Madansky, 1962 and 1965)• 

An obvious difficulty with this reformulation is that when B 

is "large," the permanently feasible set is apt to be "small," and even 

may be empty.  When the maximization operation; is performed subsequently, 

there may be little opportunity to achieve a satisfactorily high value 

of the objective function. 

•2' We adopt the notation of using braces to denote sets in this work. 
The symbol 0 denotes the empty set. 



The Penalty Function Reformulation 

The above reformulation does not admit the possibility of ever 

choosing a decision which is infeasible.  What does it mean to say that 

a decision x'  is "infeasible" when, say,  ß'  obtains? Mathematically, 

we have  g(x',ß') f 0,     which means that either  (x',ß')  is physically 

impossible, or is physically possible but "undesirable" (we are dis- 

tinguishing between those constraints which are dictated by the physical 

limitations of the system and those which are imposed at the model- 

maker's discretion).  In the second case, it may be possible to take 

additional action in order to make the outcome less "undesirable," 

or at least to pay a price for being "infeasible."  Denote this "price" 

by PCiSß');  not necessarily measured in dollars.  Note that p is, 

in general, a vector-valued function, reflecting the fact that vio- 

lations of different constraints may imply different dimensions of 

disutility.  For example, consider an investment portfolio optimization 

model which has as its objective the maximization of portfolio worth 

at the end of a specified horizon.  One constraint may specify a desired 

level of diversification (e.g., a maximum of 5C$ of the portfolio in 

defense industries), and another constraint may specify a lower bound 

on the average Standard and Poor's quality rating of the securities. 

Violation of each of these constraints would be measured in different 

units from the unit of measurement of the objective function. 

The penalty function reformulation of (l) results, in general, 

in a vector maximum problem of the form 

(3) "Maximize"  f(x,ß),  -p(x,ß) . 
x o 



An Important special case arises when p has but one component, 

and this component is additive with f. This reformulation then 

hpcomes—' 

v 
(5.1) Maximize [f(x,ß) - p(x,ß)] • 

All of the two-stage "stochastic ptrogramming" problems (see, e.g., 

Dantzig, 1955, Madansky, 1962, and Mangasarian and Rosen, 196^) can 

be thought of as penalty function reformulations.  The basic idea of 

these problems is to append a second stage to the original problem 

to "correct for" possible" infeasibility of the original decision; p 

then represents the minimum cost of correcting for an infeasible x* 

as affected by the then known actual value of ß.  The usual example 

of a situation in which the two-period formulation may be appropriate 

is the case of a manufacturer who is committed to produce to satisfy 

an unknown demand ß for his perishable products.  If all of the 

demand is not satisfied, then he purchases the difference on the open 

market. 

Probabilistic Constraints 

Assume that ß may be regarded as a random variable, and that 

its probability distribution over B is known. 

—' Note that (l) can be written equivalently in this form if p is 
taken to be arbitrarily large for infeasible combinations of x and 
ß,  and equal to zero for feasible combinations.  For example. 

Maximize  [ Inf  [f(x) +V   u.g.(x,ß)]] . 
x      u > 0       1  1 :L 



The notion of permanent feasibility may be relaxed if one requires 

merely that each or all of the constraints must hold with at least 

some prescribed probability.  For example, consider 

Maximize  f(x,ß) 
x 

subject to Prob[gi(x,ß) > 0] > ai ,    i = 1, .. . , m , 

where 0 < a. < 1 (i = 1,...,m).  Charnes and Cooper (1959^ 1963)  • 

refer to this as "chance-constrained" programming.  Note that when 

each a.  is nearly one, this reformulation approaches the permanent 

feasibility reformulation. 

Another probabilistic constraint reformulation is 

Maximize  f(x,ß) 
x 

subject to E[g(x,ß)] > 0 , 

where "E" denotes expectation. 

As an alternative to the formulations above, one may incorporate 

some or all of the probabilistic constraints in the objective function, 

e.g. , 

"Maximize" f(x,ß) ,  Prob[g1(x,ß) > 0] 
x 

subject to Prob[gi(x,ß) > 0] > ai ,     1 = 2, 3, . . . , rn 

The efficient solutions to the resulting vector maximum problem show 

clearly the available trade-offs between the original objective function 

and assurance that various of the constraints will be met. 

8 
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3-   Treating Uncertainty In the Objective Function 

In section 2 we discussed several ways of reformulating the 

constraints so as to be independent of ß.  Here we assume that this 

has been accomplished, and discuss several ways of reformulating the 

objective functions so as to be independent of ß.  For the sake of 

simplicity of discussion, we shall treat the case of but a single 

objective function, so that the problem to be considered in this section 

can,be rewritten as 

CO Maximize f(x,ß) 
x e X 

As before,  ß is known to lie in a given set B,  and X is the 

set of feasible decisions. 

Since it is necessary to choose a decision x before ß is 

revealed (if it is ever revealed), f(x,ß) must be replaced by a 

known function of x alone.  That is, (k)  must be reformulated as 

(^•0) Maximize f(x) 
x e X 

where f is a known function to be chosen.  The choice of f in a 

given situation is equivalent to what is customarily known as the choice 

of a decision criterion.  If a decision is an optimal solution of 

(^.0), it is said to satisfy the decision criterion which produces f(x) 

from f(x,ß). 

After first discussing two alternative restatements of (h),  we 

shall briefly summarize the admlssibility criterion, the maxmin payoff 

criterion, the estimate criterion, and the Principle of Insufficient 



Reason.  The difficulty of finding a single ideal decision criterion 

is well-known, and so we take the position that it may be more useful 

to select two criteria, each with distinct merits of its own, and 

recast (k)   as a vector maximum prohlem (each component of the vector- 

valued objective function is derived from one decision criterion). 

An example is presented to illustrate the possible advantages of such 

a procedure. 

We then shall assume that a probability distribution over B is 

given.  The concept of stochastic admissibility is introduced as a 

generalization of the ordinary concept of admissibility.  Next we 

examine three decision criteria for reducing (h)   to  a well-defined 

problem with heavy emphasis on a geometric motivation for each in 

order to gain insight and understanding.  These are the maximum 

expected payoff criterion, the maximum a-fractile criterion (maximize 

the Cü-fractile of the distribution of f(x,ß) under the probability 

distribution of ß,  for some preselected a),  and an aspiration 

criterion (maximize the probability of achieving at leat,t some pre- 

scribed level of payoff).  Several propositions are proved which 

relate these criteria to each other and to the previously mentioned 

criteria which do not involve probabilities.  Finally, a one-period 

inventory example is presented to illustrate the ideas of this section 

and to support the suggestion that several criteria, rather than a 

single one, should be selected to embody the conflicting aims of the 

decision-maker.  The resulting vector maximum problem should then be 

solved in place of (h). 

10 



Alternative Problem Statements 

In some situations the objective function of (k)   can be written 

as f(x,ß) = F-^x) + F2(x,ß).  If F,  and Fg each represent a 

quantity which the decision-maker wants to maximize, one may reformu- 

late (k)   as a two-component vector maximum problem 

"Maximize" F (x), Fp(x,ß) / 
x 6 X 

so as to quarantine the part depending on ß.  The advantage of this 

formulation is that the decision-maker gains a clearer understanding 

of how his objectives are influenced by uncertainty.  As an example, 

let F,  represent the immediate payoff of a multistage decision 

problem, and let Fp represent the present worth of the future payoffs, 

where ß represents the future values of exogenous variables. 

Another restatement of (k)   is obtained by using regret in place 

of payoff.  Assume that [ Max f(x,ß)]  is achieved for each ß e B. 
x e X 

The regret due to making decision x and then observing ß is defined 

to be 

r(x,ß) = [ Max f(x,ß) ] - f(x,ß) . 
x e X 

Stating problems in terms of regret rather than payoff has the advantage 

of highlighting the consequences of uncertainty in ß dramatically. 

In addition, regret may have more tractable mathematical properties 

than payoff (assuming that the indicated maximization operation is 

not overly difficult), due to non^negativity and sometimes symmetry. 

11 



When ß is known exactly^ maximizing payoff is, of course, 

exactly equivalent to minimizing regret.  When ß is uncertain, 

however, and various criteria are applied in order to arrive at a 

decision, it is well-known that different decisions often result 

depending on whether payoff or regret is used. 

In this work the discussion will he carried on primarily in 

terms of payoff, but with the ohvious modifications each criterion 

can be applied to regret as well. 

3.1 Reformulations not Involving Probabilities 

We shall briefly review a few classical decision criteria which 

do not involve probabilities.  An example is given to illustrate that 

it can be more useful to consider several criteria simultaneously 

rather than to search for a single ideal criterion. 

Admisslbility Criterion 

Consider (k).     A decision x'  is said to be admissible (with 

respect to X and B)  if x' e X and if there exists no other 

decision x" e X such that  f(x",ß) > f(x',ß)     for all ß e B,  with 

strict inequality holding for some value of ß e B.  If such a decision 

x"  did exist, it would be said to dominate x'  (one may also define 

weak dominance by dropping the proviso that strict inequality must 

hold for some value of ß).  The admissibility criterion requires 

that one choose an admissible decision.  In other words, if a(x) 

is defined to be equal to  0 if x is admissible and equal to -1 

if x is inadmissible, {k)   is reformulated as: 

(^•l) Maximize  a(x) . 
x e X 

12 



The difficulties with this criterion are twofold:  the set of 

admissible decisions may be onerous to determine computationally/ and 

this set may be quite a large subset of X. 

Maxmln Payoff Criterion 

A conservative decision-maker might invoke the maxmin payoff 

criterion, which yields 

{h.2) Maximize  [ Inf f(x,ß)] . 
x e X    ß e B 

The corresponding criterion in terms of regret is known, of course, 

as the minmax regret criterion. 

Estimate Criterion 

The estimate criterion requires that one pick a value for ß, 

say ß,  and then act as though ß were the true value of ß.-' 

That is, solve 

,  A. 
(it-. 5) Maximize  f(x,p; . 

x e X 

Since ß    may be chosen to be any point in B, we see that we 

really have a whole family of criteria. 

17 This criterion is included in order to formalize the common practice 
of using judgmental or engineering approximations to costs and other 
parameters of decision models.  The notion of an estimate is related 
to the idea of a certainty equivalent, which will be discussed at the 
end of subsection 3.2.  It should be noted that this criterion may 
also be invoked when ß is regarded as a random variable, and in 
fact, the expected value of ß is a popular estimate. 

13 



The computational advantages of this approach are obvious.  It 

is not so obvious that there exists a "good" estimate in B^  or 

how to find one. 

The Principle of Insufficient Eeason 

Assume that B consists of a finite number  (k)  of elements, 

denoted by ß .  Then the 

that one should replace (M by- 

each denoted by ß .  Then the Principle of Insufficient Reason asserts 

(^A) Maximize 
x e X 1=1 

Comparison of Criteria 

The above decision criteria are representative of the methods 

which have been proposed in an effort to circumvent uncertainty in 

the objective function in the absence of probabilities.  The diffi- 

culties of selecting one criterion which satisfies all of a compre- 

hensive set of intuitively appealing desiderata for "rational" 

decision-making are well-known (see, e.g.. Luce and Raiffa, 1957, 

Chapter 15), and suggest the futility of seeking an ideal criterion. 

One possible way out of this dilemma is to consider several criteria 

at once, and thus to reformulate (k)   as a vector inaximum problem. 

The actual choice of a decision would be made on an ad hoc basis 

from the set of efficient solutions. 

Table 1 defines a decision problem in which there are four 

possible values of  ß,  and five possible decisions.  The entries 

give the values of  f(x ,ßJ)  and the consequences of each possible 

decision in terms of average payoff (on which the Principle of 

1^ 
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Decision 

Value of ß 

ß1 ß2 ß5 ß4 
AVG 

PAYOFF 
MIN 

PAYOFF 

15 ko 53 20 52 15 

10 60 50 80 50 10 

20 1+0 ^5 91 U9 20 

60 58 30 iA 48 30 

31 31 31 31 31 51 

TABLE 1 
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Insufficient Reason is based) and in terms of minimum payoff (on 

which the maxmin payoff criterion is based).  Figure 5 graphs these 

consequences. 

All decisions are admissible.  The Principle of Insufficient 

Reason would lead to the choice of decision number two, while the 

maxmin payoff criterion leads to the fifth decision.  However, it 

seems reasonable to favor the fourth decision over any of the others 

because it comes very close to satisfying both of the above criteria. 

We submit that by judicious choice of two criteria the resulting 

vector maximum reformulation of (k) can be expected to lead to a more 

satisfactory decision than a single criterion. 

3-2 Reformulations Involving Rrobablllties 

With the additional assumption that  ß may be regarded as a 

random variable, one may choose to regard (k)   as a continuous game 

in normal form.  This viewpoint, and the consequent game-theoretic 

solutions, will not be considered here.  Instead it will be assumed 

that  ß has a known probability distribution n over  B and so 

(h)   may be regarded as a game against a neutral "Nature."  That is, 

we are in what Is sometimes known as' a situation of individual decision- 

making under "risk." 

The principal tenet of utility theory (an excellent summary is 

given in Luce and Ralffa, 1957,   Chapter 2) is that for a "rational" 

decision-maker there exists a utility transformation of f,  which 

we denote by u(f),  such that the most preferred decision is an 

16 



optimal solution of: 

Maximize E[u(f(x,ß))] . 
x e X 

If one accepts any of the sets of axioms of rational behavior leading 

- 

t 

to this result, then the maximum expected, utility criterion is justified 

provided that the required utility transformation is at hand. 

Unfortunately it may he very tedious actually to determine u(f). 

For this reason (and also because of certain reservations which we 

have with regard to the axioms of utility theory), we shall consider 

other criteria which can be applied directly to f(x,ß)  without the 

need for a utility transformation.  We begin by introducing a natural 

analog of the admissibility criterion. 

Stochastic Admissibility Criterion 

For fixed x^  M-  induces a probability distribution on f which 

may be plotted in cumulative form as in .Figure k   (each curve represents 

the cumulative distribution function of f corresponding to different 

values of x)•  Loosely speaking, one wishes to perform (k)   by choosing 

an x which determines a c.d.f. that is uniformly as low (or, equiva- 

lently, as far to the right) as possible.  In Figure k   it is clear that 

the c.d.f. determined by x  must be strictly preferred to that of 

x ,  while Xp need. not be preferred to x .  Observe that although 

the probability density functions determined by x.  and x  overlap, 

the c.d.f.'s do not. 

We formalize the above ideas in terms of the concept of stochastic 

dominance.  A decision x  is said to stochastically dominate x' 

17 
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X 

if Prob[f(x0,ß) < kj < Prob[f(x,,ß) < k]  for all real k, with 

strict inequality holding for at least one value of k (if we drop 

the proviso that strict inequality must hold for at least one value 

of k,  then we use the term weak stochastic dominance).  If a feasible 

decision is not stochastically dominated by any other feasible decision, 

it is said to be stochastically admissible.-^  The stochastic admissi- 

bility criterion requires that one choose a stochastically admissible 

decision (this criterion can be written in a form similar to (4.1)). 

Remark:  Although we do not choose to do so in this paper, it is possible 

to strengthen the stochastic admissibility criterion somewhat 

by permitting randomized decisions over X.  One would say 

that the feasible decision x'  is stochastically inadmissible 

under a randomized decision strategy if there exists a proba- 

bility distribution X  on X not involving x'  such that 

Prob  [f(x,ß) < k] < Prob [f(x',ß) < k]  for all k, with 

strict inequality holding for at least one value of k.  For 

example, in Figure k,     x,  is stochastically dominated by 

the randomized strategy which chooses x2  
anci 2%  each with 

a probability of one-half, even though neither x2 nor x^ 

stochastically dominate x  alone.  Randomized decision 

rules have the effect of taking vertically convex combina- 

tions of the c.d.f.'s.  It is clear that the set of 

j» 

—' Since stochastic admissibility is defined in terms of X and the 
particular distribution \i,     to be precise we should qualify stochastic 
admissibility as being "with respect to X and n." We omit this 
qualification for the sake of brevity, since no confusion is likely to 
result in our discussion. 
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stochastically admissible decisions allowing randomized 

strategies is contained in the set of stochastically- admissible 

decisions allowing only pure strategies. 

We now explore the relationship between ordinary and stochastic 

adrnissibillty. 

Eroposition 1: 

Let  p. vanish outside of B.  If x       weakly dominates  x', 

then x  weakly stochastically dominates  x'. 

Proof:  We must show that for all real k,,  Prob[f(x0,ß) < k] 

< Prob[f(x',ß) < k].  By the definition, of (non-stochastic) weak 

dominance, we have  f(xSß) < f{x0,ß)     for all ß e B.  Thus for any 

fixed value of k,  f(x0,ß) < k implies  f(xSß) < k,  and so for 

each k we have 

fß e B:  f(x0,ß) < k)^[ß e B:  f(x',p) < k) . 

The proposition follows. 

Remark:  To see that the converse of this proposition need not hold, 

consider the following example.  X = {x^x ],     B = {ß ,ß ], 

f(x0,ß1) = fCx1^2) = 1,     f(x0,ß2) = fix1,?1)   = 2, 

Prob[ß = ß ] = .2 j  Erob[ß = ß2] = .8.  Then x0 stochasti- 

cally dominates x ,     but x  does not weakly dominate x . 

With additional hypotheses, one may strengthen Proposition 1. 
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Proposition 2: 

Let f(x,ß)  be continuous on B for each x e X,  and let 

[i    be positive-^' everywhere on and vanish outside of B.  If 

x0 dominates x',  then x0 stochastically dominates x1. 

Proof:  From Proposition 1 we have that x  weakly stochasti- 

cally dominates x'.  It remains to show that Prob[f(x ,ß) < k*] < 

Prob[f(xI,ß) < k*]  for some k*.  Since x0 dominates x',  there 

exists ß* 6 B such that f(x0;ß*) > f(x',ß*).  Pat k* = 

l/2(f(x0,ß*-) + t{x' ,ß*)).     By the continuity of f there is a neigh- 

borhood N* of ß* such that f(x0,ß) > k^ > f(x',ß)  for all 

ß e N* O B,  and so by the posltivlty of n on B we have 

ProbCfCx0,^) > k* > f(x',ß)] > 0.  This fact, with the definition 

of x ,  yields 

Prob[f(x',ß) < k*-] = Prob[f(xSß) < k* < f(x0,ß) ] + 

Prob[f(x',ß)  < k* > f(x0,ß)] 

= Prob[f(x',ß) < k* < f(x0,ß)] + Prob[f(x0,ß) < k*] 

> Prob[f(x0,ß) < k*] . 

27 A probability distribution is said to be positive everywhere on 

B if for each ß0 e B then for every (b-dimensional) neighborhood 

N 
0    of    ß0    the  event     [N0nB]    has  a non-zero probability.     A neigh- 

defined as     [ßH/E    (ßj-ßi)2 < P] ' borhood of    ß       of radius     p     Is 
" 1=1 

and is denoted by N (ß0)  when a complete notation is desired. 
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R^oposition 2 shows that,  under the given assumptions, the set 

of stochastically admissible decisions is contained in the set of 

admissible decisions, as one would expect and hope.  To see that the 

set of stochastically admissible decisions can be considerably smaller 

than the set of admissible decisions, consider the example 

Maximize [10 - (ß - x) ] , 

x e R 

2 where |a is the Normal distribution with mean ß and variance a , 
1 

and B = R .  Viewing the objective function as a family of functions 

of ß indexed by x,  this family is seen to consist of concave 

parabolas which are identical except for the axis of symmetry, which 

occurs at  ß = x.  Clearly every x G R  is admissible, for 

f(x0,ß = x0) = 10 > f(x,ß = x0)  for all x ^ x0.  It is also clear 

that x' ^ ß  is stochastically inadmissible, for  I>rob[f(ß,ß) < k] < 

Prob[f(x',ß) < k] for all k.  To see this assertion, observe that 

{ß:  f(x,ß) > k}  is an interval of width 2(l0-k)1/2 centered at 

ß = x.  By the symmetry and unimodality of the Normal distribution, 

the interval centered at  ß = ß must include the greatest probability 

for any k,  and hence  Prob[f(ß,ß) > k] > Prob[(x,,ß) > k]  when 

x' ^ ß,  which is equivalent to the assertion that x1 ^ ß  is 

stochastically inadmissible.  Since x = ß is stochastically admissible, 

we see that only x = ß  is stochastically admissible, whereas all x 

are admissible. 

The Maximum q-Fractile and the Aspiration Criteria 

In terms of Figure k,  we would like to choose a decision which 
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achieves the lower envelope of cd.f.'s everywhere.  In general this 

is impossible, but we can attempt to achieve it at a single point and 

hope that this one point will "pin down" a cd.f. so that it is close 

to the lower envelope.  The point may be specified in terms of its 

ordinate or abcissa value, whichever seems most natural in a given 

problem context.  The criteria implied by this idea are, respectively 

and loosely: 

Criterion F;  Choose an x which corresponds to a 

cd. f. which approaches the lower envelope of cd. f.'s 

at an ordinate value of a(0 < a < l). 

Criterion A:  Choose an x which corresponds to a 

c.d.f. which approaches the lower envelope at an-abcissa 

value of M(-00 < M < M) . 

It is evident that we have two entire families of criteria here, indexed 

by a    and M respectively.  Criterion F with a = 0.1 would lead 

to the choice of x  in Figure k,  and Criterion A with M = 20 would 

lead to the choice of x. . 

Criterion F is equivalent to maximizing the a-fractile—' of the 

distribution of f(x,ß)  under (a..  That is, it maximizes the payoff 

level below which there is at most an a    probability of falling.—' 

TT7 '——— 

—' We define the a-fractile of a (possibly mixed) cumulative distri- 
bution function F(y) = Prob[Y < y] as 

Sup{k:  F(k) < a]   . 

—' See Kataoka (1963) for a linear programming model of this type. 
It Is one of the few published references to this criterion. 
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It corresponds, for fixed 0 < a < 1,  to: 

Maximize k 
k,x 

(4.5) subject to x e X 

Erob[f(x,ß) < k] < a 

When a    is small, say less than 0.1,  this criterion shoi -d appeal 

to conservative decision-makers because it tends to control the lower 

tail of the distribution of payoffs.  When a = l/2,  (4.5) maximizes 

the median of the distribution of payoffs, of course.  We sometimes 

use the mnemonic notation F(a)  for this criterion. 

Criterion A is equivalent to maximizing the probability of exceeding 

a prescribed "aspiration" level M of payoff (see Charnes and Cooper, 

1965, for an application to linear programming).  It corresponds to: 

(4.6) Minimize 
x e X 

Prob[f(x,ß) < M] 

We sometimes use the notation A(M)  for this criterion. 

Remark:  It is to be noted that all cumulative distribution functions 

in this subsection are written as Prob[f(x,ß) < k]  rather 

than as  Prob[f(x,ß) < k]  (regard x as being fixed). 

This convention is followed in order to avoid some minor 

difficulties which would be encountered by these two criteria 

if the opposite convention were adopted and the cd. f.'s 

were discontinuous. 
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We introduced these two criteria together because of their intimate 

mathematical relationship, as well as their common graphical motivation. 

When the lower envelope is attained "by some x at every point, and is 

continuous and strictly increasing, it is geometrically clear that 

the F and A criteria are complementary in the sense that for every a 

there is an M which leads to the same set of decisions, and conversely. 

Without such assumptions, however, the complementarity is weakened, 

as we shall see in the following two easy propositions. 

Proposition J>: 

(i)  Assume that criterion F(Q;0)  is satisfied by at least one 

decision. Then the set of decisions which satisfy criterion 

F(a0) contains the set of decisions which satisfy criterion 

A(M0),  where M  is the maximum a -fractile. 

(ii)  Assume that criterion A(M )  is satisfied by at least one 

decision.  Then the set of decisions which satisfy criterion 

A(M0)  contains the set of decisions which satisfy criterion 

F(a0),  where a0 = Min Erob[f(x,ß) < M0]. 
x e X 

Proof:  (i). Let x-* satisfy F(a0),  and let M  be the maximum 

a0-fractile.  If x0 satisfies A(M0),  then Prob[f(x0,ß) < M0] < 

Prob[f(x*,ß) < M0] < a0,  and so x  must also satisfy F(a ).. 

(ii). Let x* satisfy ACM0),  and let a0 = Min 
x e X 

Prob[f(x,ß) < M0] = Erob[f(x*,ß) <M0].  If x0  satisfies F(a0), 

then there exists  k0 > M0  such that  Prob[f(x0,ß) < k0] < a0;  since 
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k0 > M0,     we have     Prob[ f (x0,ß)   < M0] < Prob[f(x0,ß)   < k   ] < oc , 

from which it  follows that    x      must  satisfy    A(M ). 

Eroposition k: 

(i)        If    x       satisfies   criterion    F(a  )     uniquely^   then it — 

satisfies criterion A(M ) uniquely., where M  is the 

maximum a -fractile. 

(ii)  If x  satisfies criterion A(M )  uniquely^ then it 

satisfies criterion F(a )  uniquely, where 

a0 = Prob[f(x0,ß) < M0]. 

Proof:  (i). Suppose that x  does not satisfy A(M )  uniquely. 

Then there exists x' e X, x1 5/ x ,  such that I>rob[ f (x',ß) < M ] < — 

Prob[f(x  ,ß)   < M  ],     which contradicts the  fact that    x       satisfies 

F(a  )     uniquely. 

(ii). Suppose that x  does not satisfy F(a )  uniquely. 

Then there exist k > M  and x' e X, x'   ^ x  ,      such that 

Erob[f(x,,ß) < k0] <a0  = Prob[f(x0,ß) < M0].  Since k0 > M0,  we 

have  I>rob[f(x,,ß) < M0] < Prob[f(x',ß) < k0],  and so 

Prob[f(x',ß) < M0] < Prob[f(x0,ß) < M0].  This contradicts the fact 

that x  satisfies A(M )  uniquely. 

It is possible for criteria F(a)  and A(M)  to lead to stochas- 

tically inadmissible decisions.  The next proposition is of interest 

in this regard. 
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: 
Proposition 5: ' 

(i)   If x  satisfies criterion F(a0)  uniquely, then x0 

also satisfies the stochastic admissibility criterion. 

(ii)  If x  satisfies criterion A(M
0
)  uniquely, then x0 

also satisfies the stochastic admissibility criterion. 

Proof:     (l). In view of part (i) of Proposition k,   to prove (i) 

it is sufficient to prove (ii). 

(ii), Let x  satisfy A(M
0
)  uniquely, so that 

Prob[f(x0,ß) < M0] < Erob[f(x,p) < M0]  for all x e X,  x ^ Z ■ 

Suppose that x  were stochastically inadmissible.  Then there would 

exist x" e X, x' ^ x0,  such that Probtf(x' ,ß) < k] < 

Prob[f(x0,ß) < k]  for all k.  Letting k = M0,  one would obtain 

a contradiction. 

Now we turn to the relationship between the maxmin payoff criterion 

and the maximum a-fractile criterion with a = 0.  It is not at all 

surprising that under mild assumptions these criteria are in fact 

equivalent, i.e., the same decisions satisfy both. 

Proposition 6: 

Assume that f(x,ß)  Is upper semicontinuous^/ on B for each 

x e X,  and that |a is positive on and vanishes outside of B. 

Then the maxmin payoff criterion is equivalent to the maximum 

0-fractlle criterion. 

— Let x be fixed in X.  Then f(x,ß)  is upper semlcontinuous 

at ß e B if for each £ > 0 3 S > 0  (depending on ß0 and e)  such 
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Proof:     We shall rewrite (4.2) and (it-.5) in such a way as to 

emphasize their similarity, and then show that they are in fact 

identical. 

The maxmin payoff criterion can be written—■ 11/ 

Maximize  [Sup(k:  f(x,ß) > k,  V ß e B)] , 
x e X - ~ 

and the maximum O-fractlle criterion can be written 

Maximize [Sup(k:  Rrob[f(xJ,ß) > k] = 1}] . 
x e X ,_       " 

Define S^j^^)  and S2(x)  to be the sets appearing in the first and 

second problems, respectively, for fixed x. Clearly S,(x) CISp(x), 

V x e X, for \i vanishes outside of B. The proof will be complete 

when we show that S (x) (QS, (x), Y x e X. 

We consider a fixed x,  and drop the x arguments from 

S^  and Sg.  We may assume that  S? is not empty, for if it is 

empty then S,  is also empty, and the proof is complete.  Take 

k' e Sg.  Suppose that k' ^ S^.     Then there exists  ß' e B such 

that f(x,ß') < k'.  But by the upper semicontinuity of f(x,ß)  there 

exists a neighborhood W  of ß'  such that  f(x,ß) < k'  for all 

that f(x,ß) < f(x,ß) + €, whenever ßeW5(ß
0). If f is continuous, 

then f is upper semicontihuous. Also, recall that if B is a finite 

point set in E"
1
,  then f(x,ß)  is automatically continuous on B. 

11/ 
—  This problem follows from the definition of 'inf as the greatest 
lower bound. 
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fact that k' € S0. 

ß e N' f^l B.  By the positlvlty of p, on B,  this contradicts the 

2' 

The F and A criteria have the interesting property that one may 

perform a continuous monotonic transformation on f(x,ß)  without 

altering the decisions which satisfy these criteria.  This certainly 

is not true of the next criterion we shall discuss., the expected 

value criterion.  We emphasize this point in 

Proposition "J: 

Let g(t) he any strictly increasing and continuous function 

defined from R  into R .  Then (i) the set of decisions which 

satisfy criterion F{Q!)  does not alter if f(x,ß)  is replaced 

hy g(f(x,ß)), and (ii) the set of decisions which satisfy criterion 

A(M)  does not alter if f(x>ß)  is replaced by g(f(x,ß))  and 

M is replaced by g(M). 

Proof:  Observe that f(x,ß) < k if and only if g(f(x,ß)) < g(k), 

since g is invertible and strictly increasing.  Hence  (ß:  f(x,ß) < k] 

{ß:  g(f(x,p)) < g(k)},  and so Erob[f(x,ß) < k] = Prob[g(f(x,ß)) < 

g(k)].  This yields (ii).  To see (i), write 

Sup{k:  Rrob[f(x,ß) < k] < a} 

= Sup{k:  Prob[g(f(x,ß)) < g(k)] < a} 

= Bup{g"1(g(k)):  Prob[g(f(x,ß)) < g(k)] < a) 

= g"1(Sup{g(k):  Prob[g(f(x,ß)) < g(k)] < a}) 

= g"1(Sup{t:  Prob[g(f(x,ß)) <t] < a}) . 
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Finally, '* 

Max [Sup{k:  I>rob[ f (x,ß) < k] < a} ] 
x e X 

= g"1( Max [Sup(k:  I>rob[g(f (x,_ß)) < k] <&]])   . 
, x e X 

Maximum Expected Payoff Criterion 

The F and A criteria are designed to achieve the lower envelope 

of the family of c.d.f.'s  [l>rob[f(x,ß) <k]}      at a single point, — —        X t A      — __——— ——— 

in an attempt to "pin down" a c.d.f. to lie "close"to the lower 

envelope.  Another approach would be to use the area above the lower 

envelope and below a candidate c.d.f. as a measure of "closeness." 

Criterion E:  Choose an x e x which determines the 

c.d.f. with the least area below it and above the lower 

envelope. 

We shall show now that this geometrically motivated criterion 

is equivalent to the maximum expected payoff criterion: 

(k.'j) Maximize E[f(x,ß)] . 
x e X 

Proposition 8: 

Criterion E is equivalent to the maximum expected payoff criterion. 

Proof:  The proof is a simple consequence of the geometric inter- 

pretation of the mean of a random variable in terms of the graph of 

its  cumulative distribution function.  In Figure 5, the mean of the 

random variable Y  is area 1 minus area 2 (see Parzen, i960, p. 211). 
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Denote by A(x)  the area corresponding to area 1 of Figure 5 

for the cd. f.  Erob[f(x,ß) < k],  and by A(x)~ the area corres- 

ponding to area 2.  Similarly, denote by A  and A~ the areas above 

and below the lower envelope of all such cd. f.'s.  The the maximum 

expected payoff criterion may be written 

Maximize  [A(x)  - A(x)-] , 
x e X 

and Criterion E may be written 

Minimize  [(A(x)" - A") + (A+ - A(x)+) ] . 
x e X 

Clearly these two problems lead to the same decisions. 

Figure 5 

There is an obvious and fortunate relationship between the maximum 

expected payoff criterion and the estimate criterion which sometimes 

permits one to choose an estimate in a simple way so that the estimate 

criterion is satisfied by the same set of decisions as the expected 

payoff criterion. 
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Proposition 9: 

Assume that    f(x,ß)     can be written as 

f(x,ß)  = F1(x)   + F2(ß)   +   £   H.(x)ß.   . 

Then the estimate criterion with ß = E[ß]  is satisfied by the 

same set of decisions as the maximum expected payoff criterion. 

'Proof:     The maxim-am expected payoff criterion gives 

Maximize E 
x e X 

F1(x) + F2(ß) + £   H.(x)ß. or 

Maximize 
x e X 

F1(x) + E[F2(ß)] + %   H.(x) ELß1] 
1 

The estimate criterion with ß = E[ß]  gives 

Maximize 
x e X 

FlW + F2(E[ß]) + £ H.(x) EEß1] 

Since the F2 terms of each problem do not contain x^  they may 

be deleted, and hence the two criteria lead to identical sets of 

decisions. 

When the above proposition applies, we say that the estimate 

ß = E[ß]  is a certainty equivalent with respect to the maximum 

expected payoff criterion.  Other results in the same vein are given 

by Reiter (1957), Simon (1956), and Theil (196^). 

It is easy to see from Proposition 8 that any decision which 

satisfies the maximum expected payoff criterion must be stochastically 

admissible. 
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It is also worth noting that the expected value criterion leads 

to the same decisions when applied to payoff as when applied to regret. 

In general this is not true for criteria A(M)  and F(a). 

3•5 An Example 

We present a simple Inventory model as an illustration of the 

ideas of this section and as a vehicle for further discussion.  Consider 

a firm stocking and selling a single commodity for a single period of 

time.  We use the notation 

x = number of units to be ordered in advance of the 
demand 

ß = unknown demand level during the period 

c = cost per unit 

r = revenue per unit (r > c) 

v = salvage value per unit left at end of period (v < c) 

f(x,ß) = total profit 
i 

X = [0,oo) 

B = tO,ßMAXJ, where ßMAX is chosen sufficiently large 

to account for the largest likely demand 

The payoff and regret are given by 

(r-c)ß - (x-ß)(c-v)  if ß<x 
f(x,ß) = ' 

(r-c)x if ß > x 

(c-v)(x-ß) if ß < x 
r(x,ß) 

(r-c)(ß-x) if ß > x 
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First we examine the criteria not involving probabilities over 

the set of possible demand levels.  All choices for x £ X are readily 

seen to be admissible.  The maxmin payoff criterion leads to the decision 

to order zero units, since  Min f(x,p) = -(c-v)x.  When this criterion 
ß e B 

is applied to regret, however, it (minmax regret) leads to the decision 

to order [ (r-c)/(r-v) jßj^.  This is the same decision that the 

Principle of Insufficient Reason would give if we interpret it as 

putting a uniform distribution over  [O/ß^J.  The estimate criterion 
A 

leads to a trivial maximization problem once an estimate  ß  is chosen, 

A 
and indicates that we should order exactly x = ß. 

Next we examine the criteria involving probabilities over the set 

of possible demand levels.  In order to plot the cumulative distri- 

butions of payoff for various candidate x's, we need to know the 

set of ß's  for which the payoff is less than k. 

/ 

[ß:  ß > 0,  f(x,ß) < k} =< 

[0,= 

k + (c-v)x 
r-v 

if k < -(c-v)x 

if -(c-v)x < k < (r-c)x 

if k > (r-c)x . 

Using the fact that x  is non-negative, we have for  k > 0 

Prob[f(x,ß) < k] 

if x < (r-c) 

T Jk+(c-v): t-(c-v)x 
(r-v) 

d\i    if x > - (r-c) 
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For k < 0, 

if x < -k 
T^T 

Prob[f(x,ß) < k] 
Jroo 

d|a if x > T-^-T 
'k+(c-v)x 

(r-v) 

The lower envelope may be obtained by solving, for all real k, 

the problem 

Minimize Prob[f(x,ß) < k] . 
x > 0 

This problem has a very simple solution for this example.  For k < 0, 

the minimum is zero and is achieved for 0 < x < |ki/(c-v).  For k > 0, 

Jk, 
the minimum is 1 - /      d|j and is achieved for x = k/(r-c). 

/k/(r-c) 

Assume for computational simplicity that the demand is exponen- 

tially distributed with mean 10, that  (c-v) = 1/2,  and that 

(r-c) = 3/2.  Then for k > 0,  the lower envelope has height 

[1 - exp[-.0663 k]],  and is achieved at x = 2k/j.—'  Figure 6 

illustrates the lower envelope and a few sample c.d.f.'s.  Observe 

that each c.d.f. jumps to the value 1 as soon as it attains the lower 

envelope, and that every x > 0 is stochastically admissible. 

We are now in a position to read off the "optimal" decisions 

corresponding to criteria A(M)  and F(a)  for any choice of M 

or a.     A(M )  leads to the unique choice of x = M0/(r-c),  and 

F(a )  leads to the unique choice x = -10 ln(l-a ).  In this 

127  
— Note that the lower envelope is the c.d.f. of an exponential 
distribution with mean 15. 
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particular example, these criteria do not fulfill their promise of 

"pinning down" a c.d.f. to lie close to the lower envelope, because 

each cd. f. is discontinuous at the point at which it achieves the 

lower envelope. 

The maximum expected payoff criterion may be applied by setting 

the derivative of E[f(x,ß)]  equal to zero and solving for x. 

This computation leads to the well-known (Dvoretzsky, Kiefer, and 

Wolfowitz, 1952) result that one should choose the value of x 

corresponding to the (r-c)/(r-v)-th fractile of (i.  That is, 

rx* 
x* should satisfy /   du = (r-c)/(r-v).  For the data assumed above, 

Jo 
x* = 13.8.  It is interesting to observe that if y.    were uniform 

on ^0'^MAX^'     then the mirimax regret criterion would lead to exactly 

the same action as would the maximum expected payoff criterion. 

Next we carry out a parallel analysis in terms of regret rather 

than payoff ,  It will be seen that A(M)  and F(a)  are more 

appealing when applied to the regret distributions.  An argument will 

be presented for choosing a value of x other than that which mini- 

mizes expected regret (which, of course, is equivalent to maximizing 

the expected payoff, the now classical solution to this problem). 

We have, for k > 0, 

(ß: > 0,  r(x,ß) < k) = 

0, x + x^y if x < 

c-v X + 
r-c if x > 

^c-v) 

k 

Since we are dealing in terms of regret, rather than payoff, we seek 

the upper envelope rather than the lower envelope.  It is obtained by 
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maximizing, for all k > 0,  ProblXx,!*) < k] 

k 

Maximize 
x > 0 

Since the exponential distribution is monotone decreasing, the maximum 

is easily seen to be achieved at  x = k/(c-v).  The height of the 

upper envelope is therefore equal to Prob[ß < k/(c-v) + k/(r-c)]. 

For the data given previously, this quantity is computed to be 

[l-exp(-0.266)5 k)],  and the uppe1" envelope is achieved for x = 2k. 

Figure 7 is the counterpart of Figure 6. Note that the c.d.f.'s 

are continuous, so that A(M) and F(a) are more effective in their 

endeavor to "pin up" a c.d.f. to lie near the upper envelope. 

For a given value of x,  it is a straightforward matter to calcu- 

late the expected regret and the CC-fractile.  This has been done 

for a = .95 and some representative values of x in Figure 8.  The 

striking feature of this graph is that large relative changes in .95- 

fractile are available with only small relative changes in expected 

regret, with the result that it becomes attractive to deviate from 

the ordinary minimum expected regret solution to the problem.  For 

example, consider x = 13.8  (which yields the minimum expected regret) 

in comparison with x = 20.  The former has an expected regret of 

6.9 and a .95-fractile of 2h-.l,  whereas the latter has an expected 

regret of 7.7 and a .95-fractile of 1^.8.  That is, by choosing x = 20 

instead of 13.8, one may achieve a 58.5f0 decrease in .95-fractile at 

the expense of only 11.6^ increase in expected regret; for x = l8 

instead of 13.8, the percentages become 26.1^ and 5.9^- 
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Prob [r(x,ß) < k] 

Figure 7 
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This example shows a special Instance of what is likely to he 

a quite general situation:  in the neighhorhood of the decision indicated 

hy the maximum expected payoff criterion, it is possible to substan- 

tially improve the CC-fractile or aspiration levels of payoff or regret 

without lowering the expected payoff very much.  Such possibilities 

ought to be investigated and exploited when found to be relevant to 

the decision-maker's objectives. 

5-^ Vector Maximum Reformulations 

The "ideal" decision criterion is analagous to the much-sought 

philosophers' stone of medieval times, and seems about as likely 

to exist.  We suggest that one might profitably consider, in a given 

application, two or even three plausible criteria (not necessarily 

the ones discussed herein) and reformulate (h)   as a vector maximum 

problem.  The solution of this vector maximum problem would reveal 

clearly the tradeoffs involved between the criteria, and a decision 

may be chosen in an ad hoc manner from the efficient candidates.  For 

example, if a situation such as Figure 9 occurs, one would probably 

choose an efficient solution nearer to point B than to point A, for 

a large gain in criterion 2 can be achieved at the expense of a rela- 

tively small loss In criterion 1. 

Criterion 2 (to be maximized) 

A 

Figure 9 
^  Criterion 1 

(to be maximized) 
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One combination of criteria which seems particularly plausible 

when a probability distribution over B is available is the a-fractile 

criterion with the expected value criterion.  With a small, the 

first criterion tends to control the lower tail of the distribution 

of payoffs, while the second tends to control the mean.  Such a com- 

bination might be used to program a mutual investment fund, for example, 

for the possibility of ruin or large losses seems to loom as a separate 

dimension of utility from the average growth rate.  Markowitz (1956) 

had precisely this viewpoint in mind for his well-known portfolio 

problem, except that he used variance in place of the a-fractile. 

Hodges and Lehmann (1952) proposed essentially this combination 

of criteria, except that they took a    equal to zero.  Letting a 

rise above zero seems to avoid some of the excessive conservatism in 

their formulation, while keeping the aim of protection against large 

losses. 

k2 
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CHAPTER II 

Reducing a Vector Maximum Problem to a 

Parametric Programming Problem 

In this chapter it is assumed that uncertainty has been removed 

from a decision problem by means of devices such as those discussed 

in the first chapter, and that it is desired to solve the vector 

maximum problem. 

(1) "Maximize"  f(x) , 
x e X 

where f(x) = (f (x),...,f (x)),  x is an n-vector,  and X is 

a given set of feasible decisions.  Recall that "solving" (l) means 

finding all efficient decisions, where a feasible decision x  is 

called efficient if there exists no feasible decision x'  such that 

f(x') > f(x ).—'  We shall discuss two ways of reducing (l) to a 

parameterized family of ordinary (one criterion function) mathematical 

programming problems, or "parametric" programming problems.  Existing 

computational methods for these problems will be indicated. 

This chapter is intended to serve as a bridge between the study 

of decision problems under uncertainty, which was the topic of the 

first chapter, and the study of a class of algorithms for parametric 

programming, which is the topic of the third chapter. 

— Recall that by this notation we mean f.(x') > f.(x )  (i = l,...,r) 

with  f.Cx') > f.(K )  for some  i  (see Footnote 1, Chapter l). 
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1-        deducing   (1)   to  a  Problem  Parametric  in the  Constraint s 

' s From the definition of an efficient decision for (l), it is 

easy to see that a feasible decision x0 is efficient if and only if 
o 

x  is an optimal solution to each of the r problems 

Maximize  f.(x) 
x e X    ''- " (21) 

subject to f.fx) > f 
J 

subject to f.(x) > t.(x0)   ,     j = 1, ... , r but ^  ^ 1  > 

i - l,...,r.  It follows immediately that the following assertion 

holds. 

Proposition 1: 

Let 1<io<r be fixed- If x0 ^ efficient in (l), then 

there exists an (r-l)-vector 6 such that x0 is an optimal 

solution of (3i0), where (31) is given by 

Maximize  f.(x) 

(31)      i? e x 

subject to f..( x) > Sj ,  j = 1, ... , r but j ^ 1 . 

This proposition suggests a method for finding all efficient 

decisions.  Taking r = 2 and io = 1,  for example, we find the 

set of all efficient decisions among the totality of optimal solutions 

to 

Maximize f-, (x) 
(3) x e X 

subject to f (x) > S 

as  8 varies over  (-^-Ko).  Often f2(x)  is bounded from above 



on X,  and so the interval of parametric variation does not extend 

to +=0.  Likewise when fp(x)  is bounded from below on X,  or when 

the maximum of f, (x) on X is achieved for some value of x» ^he 

interval of parametric variation need not extend to -°°. 

This method yields not only all efficient decisions, but possibly 

some inefficient ones as well, since it may be possible to increase 

f (x)  without decreasing f (x)  below its maximum value for a parti- 

cular value of 5.  A similar remark holds a fortiori for r > 2. 

Culling out the inefficient decisions when r = 2 is easily done. 

In principle, by viewing the graph of (f^x),f2(x))  for all candi- 

date decisions generated by the method.  For r > 2,  graphical analysis 

rapidly becomes Impractical, and one must rely on sufficient conditions 

such as those given in 

Eropositlon 2: 

Let 1 < i < r and the (r-l)-vector 5  be fixed, and let 

x  be an optimal solution to (51 ) with 8=5.  If any of 

the following three conditions are satisfied, then x  is 

efficient in (l). 

(l)  x  is also an optimal solution of the r-l problems 

(51),  i ^  1,  with 8 = f.Cx0), i  = l,...,r. 
o J     J 

(il)  x  Is the unique optimal solution to (5i ) with 

8=5. —  —o 

(ill)  x  is the unique optimal solution to (5i ) with 

Sj = V^   J ^ v 
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Proof:  If (i) is satisfied,  x0 is efficient in (l) by the 

opening remark of this section. 

Assume that (ii) is satisfied, and suppose that x0 is not 

efficient.  Then there exists x' ^e X such that f(x') > f (x0)., 

which implies that x'  is feasible and optimal in (3i ) with 

5 = 6 .  thus contradicting the unique optimality of x0.  Hence 

x  is efficient. 

Since x  also is an optimal solution of (31 ) with 5 = f fx0), 
- - ^  o 3 j^-   " 

the argument apropos (ii) applies. 

Under additional hypotheses. Propositions 1 and 2 can be combined 

to give 

Proposition 3: 

Let  1 5 ^o 5 r be fixed.  Assume that  fi     is strictly concave, 

flCj ^   i )  is concave,  and X is convex.-'  Then x0  is J       u 

efficient in (l) if and only if x0  solves (31 ) for some (r-l)- 

vector  5. 

Proof:     Necessity was proven in Proposition 1.  To prove suffi- 

ciency, apply A.2 of Appendix A and part (ii) of Proposition 2. 

2.   Reducing (l) to a Problem Parametric in the Objective Function 

We shall give some conditions under which (l) can be reduced to 

27 
- See Appendix A for definitions of convex sets and concave functions, 
and some properties thereof which will be used freely in the sequel. 
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a family of problems of the form 

r 
(k) Maximize  ^ "v.f.(x) , 

x e X        i=l :L
 

:L 

where v > 0  is a vector-valued parameter. 

Proposition k: 

(l)   If v > 0 and x  is an optimal solution to (h),  then 

x  is efficient in (l). 

(il)  If v > 0 and x  is the unique optimal solution of 

(k),  then x  is efficient in (l). 

Proof:  Suppose that (i) is false.  Then there exists x' e X 

such that f(x') > f(x );  since v > 0,  this implies that 

^v.f.(x') >^v,f.(x ),     thus contradicting the optimality of x 

In (1+).  This proves (i). 

Suppose that (ii) is false.  Then there exists x' € X,  x' ^ x , 

such that  f(x') > f(x );  since v > 0.,  this implies that 

^v.f.(x') ^/y'v.f.(x ),     thus contradicting the unique optimality 

of x  in (k).     This proves (ii). 

3/ 
Proposition 5'-— 

Let  X be convex, let  f.(x)  be concave,  1 = l,...,r,  and 
i 

o 
let x  be efficient in (l).  Then there exists an r-vector 

v > 0  such that x  is an optimal solution of (4) with v = v 

37 :  
—' The earliest statement and proof of a theorem of this type seems to 
be due to Kuhn and Tucker (1951).  An elegant proof of this proposition 
has been given by Karlin (1959, p. 217)•  For the sake of completeness 
we record a slightly different version of that proof here. 
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Proof:  Put  P = {p e Er:     P> f(x0)].  Clearly P is convex. 

Put Z =   [z  e E  :     z <  f(x)  for some x e X}.  Z is convex, for 

let z' ,z"   e  Z and let  0 < \ < 1. By  the definition of Z  there 

exist xSx" e X such that z'   < f(x')  and z" < f(x").  Hence 

(Xz' + (l-X)z") <Xf(x') + (l-X)f(x") <f(\x' + (l-X)x") , 

where the last inequality follows from the concavity of f(x).  Since 

(Xx1 + (l-X)x") e X by the convexity of X,  (Xz' + (l-X)z") e Z. 

This shows that  Z  is convex. 

Because x  is efficient,  ZPlP is the single point  f (x0) ,, 

so that  Z  and P have no interior points in common.  Hence we may 

apply the well-known Theorem of the Separating Hyperplane (see A.7, 

Appendix A) to assert the existence of an r-vector v0 ^ 0 and a 

scalar c  such that 

Z vi ^ < c 5 £ v° Pi '  v£ e Z,  P e P . 

The right-hand inequality and the definition of P imply that 

Z ^.2.'     for  otherwise the sum ^v- P-  would be unbounded from 

below.  By the definition of Z,     the left-hand inequality yields 

£>° f^x) < c,     Vx e X.  Taking p = f (x0),  we have ^ v0 f.(x) < 

Svi f±(^  )'  Vx e Xj,  which is equivalent to the assertion that 

x  is an optimal solution of (k)   with v = v0. 

When the hypotheses of Proposition 5 hold, one is sure to find 

all efficient decisions for (l) among the totality of optimal decisions 

for (it-) as  v ranges over all non-negative values.  Notice that 
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without loss of generality one may take T^v. = 1 in (k),   since for 

fixed v > 0 the objective function of that problem can be scaled 

by a factor of l/ D v. without affecting the set of optimal solutions. 

Hence v is really only an (r-l)-dimensional parameter.  When r = 2, 

for example, (h)   reduces to the parametric problem 

(^.l)      Maximize vf (x) + (l-v) fp(x)  for each 0 < v < 1 . 
x e X 

By strengthening the hypotheses of Proposition 5, the last two 

propositions can be combined to give 

Proposition 6: 

Let X be convex, and let  f (x)  (i = 1,...,r)  be strictly 
i — 

concave.  Then x  is efficient in (l) if and only if xC 

"• solves (k)   for some v > 0. 

Proof:     Necessity was proven in Proposition 5.  To prove sufficiency, 

apply A.2,   A.k,   and part (ii) of Proposition k. 

3.  Computational Methods for Parametric Problems 

A very common approach for a decision-maker to take, when faced 

with solving a multi-criterion problem such as (l), is to reformulate 

(1) in the form of (ji) or (k)   (or possibly a combination of the two) 

with S or v fixed at some value of particular interest.  Problem 

(31) corresponds to selecting and retaining the most important criterion 

function and putting the rest in as constraints so that the remaining 

criteria each meet at least some minimally acceptable level.-' 

¥7  
- For an early and important example of this, see Neyman and Pearson 
(3-933), who employed this device as a cornerstone of their theory of 
statistical hypothesis testing. 
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Problem {k)   corresponds to maximizing a weighted combination of criteria 

which is designed to reflect the relative importance of each.  Such 

an approach offers computational simplicity in comparison with a 

complete solution of (l), since just one ordinary maximization problem 

has to be solved.  After (jl) or (k)   has been solved for the selected 

5  or    Z  >     the value 0:£" B or Z may be varied in a neighborhood 

of &  or v  in order to ascertain how the corresponding optimal 

decisions and payoff function vary.  This is a type of "sensitivity 

analysis."  The above propositions relate this type of sensitivity 

analysis to the partial solution of (l) in the vector maximum sense. 

Whether for purposes of sensitivity analysis or of solving (l), 

solution methods are required for the parametric problems associated 

with (Ji) and {k).     Since analytic methods can be expected to have 

very limited applicability—if experience with non-parametric mathe- 

matical programming is any guide— numerical methods must be employed. 

In this regard, we are obliged to limit our consideration to problems 

for which X is convex  and  f^x)  (i = 1,... ,T)  is concave, for 

most known programming algorithms-' require at least convexity of 

the feasible region and concavity of the objective function.  We shall 

further limit our consideration to the important case r =  2,     because 

the vastness of the parameter space increases so rapidly with r  as 

to preclude the reasonable hope of solving parametric problems even 

to reasonable approximation when r  is much larger than 2 or 3. 

-' For surveys of (nonlinear) programming algorithms, see, e.g.. 
Dorn (I965), Hadley (1964), Saaty and Bram (196I+, Chapter 3), Wolfe 
(1962), and Zoutendijk (i960). 
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¥e now indicate some existing computational methods^ and point out 

the need for the developments of the next chapter. 

If X is a convex polyhedron (i.e., the feasible region is 

determined by a set of linear equalities or inequalities), then several 

efficient parametric programming algorithms are available for certain 

special classes of criterion functions: when f.,  and fp are both 

linear functions, parametric versions of (3) and (^.l) can be solved 

by parametric linear programming (Gass, 1955); when f  is linear 

and fp is a quadratic polynomial,—' the algorithms of Houthakker 

(i960), Markowitz (1956), and Wolfe (1959) are available;-' when f 1/ 

and fp are both quadratic polynomials, an algorithm of Zahl (196^) 

essentially solves (^.l), although it seems possible to improve upon 

the efficiency of his procedure by utilizing the developments of the 

next chapter.  Little if anything appears to have been done to devise 

efficient algorithms for parametric problems involving more general 

classes of criterion functions or feasible regions other than convex 

polyhedra.  The class of algorithms developed in Chapter III is 

intended as a contribution in this direction.  At the present state 

of the art of parametric programming, however, one must fall back 
■ 

upon more rudimentary methods. 

In principle, if an algorithm is available which will solve 

(31) or (k)   for any particular value of the parameter, then by 

-' That Is,  f2(x) = x ^ + £ ^'  where t  denotes transpose and Q 

is a negative semldefinlte matrix. 

-/ See also Boot (1963a, 1963b), 
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employing a suitably fine grid of parameter values one can obtain a 

discrete approximation to the optimal solutions of the parametric 

problem.  This is a very straightforward approach, and for many 

problems it may be fairly practical, since the optimal solution for 

one parameter value can be expected to provide a nearly optimal 

solution at the next parameter value on the grid.  Because most 

programming algorithms may be viewed as gradient methods, this 

approach should provide roughly first order convergence between 

optimal solutions at adjacent pairs of grid points. 

In the next chapter we offer an alternative to the last approach 

under quite general assumptions on the criterion functions and the 

feasible region.  We shall develop a class of algorithms for solving 

(k.l),   a main member of which exhibits second order— convergence 

between adjacent pairs of grid points. 

—' A sequence < x > which converges to x  exhibits first (second) 
order convergence if the norm of the error at the n-th step is 
asymptotically proportional to the (square of the) norm of the error 
at the n-lst step (see Appendix C, section l). 

( 

o 
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M CHAPTER III 

A Class of Algorithms for Parametric Concave Programming 

1.   Introduction and Preliminaries 

In this chapter we present a class of algorithms for solving parametric 

concave programming problems of the form 

Max 

(KO 

imize af (x) + (l-a)f (x) 

subject to g(x) > 0 

for each a e [0,1];, where x is an n-vector,  f. (x) (i = 1,2) is 

strictly concave,-' and each component function of g(x) = (g (x),.,.,g. (x)) 

is concave.  Certain additional regularity requirements are detailed in 

subsection 2.1. 

Since our topic is parametric programming, rather than ordinary 

(non-parametric) mathematical programming, we shall further assume 

that an optimal solution of {loc)     is available for some value of a 

in the unit interval.  This assumption is in fact not restrictive, 

for it is shown in subsection 1.1 that a parametric programming algorithm 

for  (Pa)  which requires an optimal solution for some value of CC 

in order to "get started" can itself be used to generate such an 

optimal solution. 

-' The algorithms to be given still apply if (in the following,  e > 0 

is arbitrarily small):  (a) f  is strictly concave and f  is (non- 

strictly) concave and [0,1]  is replaced by  [e,l],  or (b) f  is 

concave and t       is strictly concave and [0,1]  is replaced by 

[0,1-e],  or (c) at^  + (l-a)f  is strictly concave for each fixed 

a  e (0,1)  and [0,1]  is replaced by  [e,l-e]. 
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The remainder of this section motivates  (Kc)  and the present 

class of algorithms:  in subsection 1.1 it is noted that  (la)  subsumes 

the vector maximum problem for two criterion functions and also the 

standard (non-parametric) concave programming problem, and in sub- 

section 1.2 the Kuhn-Tucker Theorem for nonlinear programming is 

presented in slightly unconventional form so as to display clearly 

the foundation upon which the present class of algorithms is built. 

Section 2 is devoted to presenting and proving a Basic Conceptual 

Algorithm for solving  (Kü)  for each value of a    in the unit interval. 

Three graphical examples are given in Appendix B.  The development 

of this conceptual algorithm into a Basic Computational Algorithm, via the 

use of Newton's method for solving the relevant systems of equations, 

is the subject of section 3.  Some necessary computational devices are 

recorded in Appendix C.  Section U hosts a modification (more accurately, 

a completion) of the algorithms aimed at improving their efficiency. 

Two extensions are indicated in section 5:  the adaptation of the 

present algorithms to handle linear equality constraints, and the 

possibility of solving more general kinds of parametric problems than 

(Rx). 

1.1 Motivation of  (Bg) 

One motive for studying  (Kx)  was given in Chapter II.  From 

Proposition 6 of that chapter, which applies because of the above 

assumptions, solving  (la)  for all 0 < CC < 1 is exactly equivalent 

to solving the vector maximum problem 

(l) "Maximize"  f-, (x), fpCx)  subject to g(x) >0 . 

o 

x 
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That is, every efficient decision for (l) is an optimal solution of 

(Rx)  for some 0 < a < 1,  and conversely. 

Another reason for studying (Rx)  is that it subsumes the standard 

problem of concave programming.  Suppose that it is desired to solve 

(2) Maximize F(x)  subject to g(x) > 0 , 
x — — = _ 

where F(x)  is strictly concave and the constraint functions are all 

concave.  If x  is any feasible decision whatsoever of (2),  put 

(Rx)  equal to 

Maximize aF(x) + (l-a)(-l) V (x. - x0)2 

x       '" 1   1   ^ 
(3a) 

subject to g(x) > 0 . 

Then    x0 clearly is the optimal solution of (3o), and (3a) satisfies 

the assumptions required of (m)     in the opening paragraph.  Applying 

an algorithm for parametric concave programming to (3a) beginning 

with a = 0 and increasing a    until a = 1, one obtains the optimal 

solution to (3-J,   which is identical to (2).  Hence a parametric 

algorithm for  (Rx)  provides a "deformation" method of concave pro- 

grarnming. 

Problem (3a) is capable of an interesting interpretation, which 

we shall now sketch briefly.  Consider an enterprise currently "operating" 

at the (feasible) point x0, with a single criterion function F(x) 

and a feasible operating region  (x:  g(x) > 0}.  Due to conservatism, 

or a desire to avoid disrupting the operations of the enterprise 
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radically, or to a desire to hedge against the risk of a faulty decision 

models assume that the managers of the enterprise prefer to adjust the 

operating point gradually from x  toward, x*, where x* i-s optimal 

in (2).  If the managers have a quadratic loss function ^ (x.-x.) 

associated with deviations from x ,     the optimal solution to (5oO — 

o 
as a varies from 0 to 1 gives an optimum path from x  to x** 

Since  (Kc)  for fixed a    is of the form (2), the device repre- 

sented by (jta) can be used to find a starting optimal solution to 

(pa;)  if one exists (providing that a feasible decision is known), so 

that the assumption stated in the introductioH is not restrictive, 

as asserted. 

Of course, in place of (50:) one could use 

Maximize aF(x) + (l-a)H(x) 

{ka) * 

subject to g(x) > 0 , 

where H(x)  is a strictly concave function with a known maximum 

over the feasible region. 

1.2  Theoretical Foundation 

The standard problem of concave programming can be written in the 

form of (Pet ) with OC fixed. For simplicity of notation, we write 

f(x;a)  for Off (x) + (l-Q!)f (x).  Hence  (KC )  may be written as 

(B3 ) Maximize  f(x;a )  subject to g(x) > 0 . 
x 
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Fundamental theoretical results concerning this problem have heen given 

by Kuhn and Tucker (1951).  A version of their Theorem 3 is recorded 

here without proof. 

Theorem (Kuhn-Tucker): 

Consider  (R^)  with ao fixed.  Let  f('x;a )  and g.(x) 

(i = l,...,m)  be differentiable on the feasible region  {x:  g(x) > 0], 

let  f(xja )  be concave on the feasible region, and let  g.(x) 

(i = l,...,m)  be concave on E .  Assume that the constraint functions 

satisfy the Kuhn-Tucker Constraint Qualification (see the remark 

following the statement of the theorem). 

Then x  is an optimal solution of (la )     if and only if there 
— o 

exist real m numbers \°    such that  (x0,X0)  satisfies the following 

2/ 
(Kuhn-Tucker) conditions—' at a = a  : 

o 

m 

(5) V/Cx;«) +S VLV^CX) = 0 

(6) gi(x) > 0 ,     i = 1, ... , m 

(7) gi(x) j = I 0 implies ^ i > [ 0 ,    i = 1, .., , m . 

Remark:  For a statement and discussion of the Kuhn-Tucker Constraint 

Qualification, see Kuhn and Tucker (1951, p. 483) or Arrow, 

Hurwicz, and Uzawa (1961).  It has been shown, for example, 

that if all the constraints are linear then this qualification 

27 TT 
-' The symbol y   denotes the gradient of a function of several variables, 

e.S., Vx«2. ^ . ... , ^1] ■ 
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is satisfied; and that the existence of an interior point 

of the feasible region is also sufficient for the qualifi- 

cation to be satisfied.  The sufficient condition which will 

be of direct use in the sequel is:  if **{%)     is an optimal 

solution of (B3 ),  then the matrix whose rows are 

U s (x*(a )),  i  such that  g.(x*(a )) = 0,  is of maximal 
Vx i —  o i —  o 

rank (see Arrow, Hurwicz, and Uzawa, 1961). 

Direct analytical or numerical attempts to satisfy these conditions 

have proven quite difficult, in general. 

We shall find the following equivalent version of the Kuhn-Tucker 

Theorem more suitable for our purposes. 

Theorem (Kuhn-Tucker, an alternate version): 

Assume that the hypotheses of the Kuhn-Tucker Theorem are satisfied. 

Then x0  is an optimal solution of  (K^)  if and only if there 

exist m real numbers u°  and a subset 3°  of constraint indices 

such that  (x0,u0,S0)  satisfies the following conditionsat a= O^: 

(=s)a 
(KT-i) VxfQs;«) + L ^Vx6!^ = 0 

(KT-2)  g.Cx) = 0, V i e S 

u. = 0, V i ^ S 

(KT-5)  g-W >  0'    V   1  ^  3 

{■KS-k)     u, > 0, VieS 
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Equations (KT-l) and (KT-2) appear so often together in the sequel 

that we Introduce the special symbol  (=S)a to denote them (in this 

notation,  S and a    may vary).  We also denote the set of the first m 

positive integers by M. 

The equivalence of the two versions of this theorem follows from 

the easily verified 

Proposition 1: 

(i)   If  (x0A0)  satisfies (5) through (7) at a ,     then 

(x0,X0,S0)  satisfies (KT-l) through (KT-J+) at a      for 

o 
any S   satisfying 

(8) U  € M:     X° > 0}CS0oCi   e M:     g.^c0)   =  0}   . 

(ii)  If  (x0,u0,S0)  satisfies (KT-l) through (KT-4) at a  , 

then (x ,u )  satisfies (5) through (7) at a . 

The numbers \.     or u.  will be referred to as dual variables. 

In view of Proposition 1 it is useless to distinguish between \     and 

uj henceforth we shall use the symbol u to refer to the dual vari- 

ables of either version of the Kuhn-Tucker Theorem. 

The concept of a valid set plays a central role in this work. 

A subset  S  of constraint indices is said to be valid at a.      if 
      o 

and only if there exists  (x ,u )  such that  (x ,u ,S )  satisfies 

(KT-l) through (KT-1+) at 0! . 
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Proposition 2: 

A subset 3° of constraint indices is valid at ao if and only 

if S0  satisfies (8) for some  (x0,X0)  which satisfies (5) 

through (7) at a . 

Proof:  Assume that 3° is valid at a .     Then there exists  (x ,u ) 

such that  (x0,u0,S0)  satisfies (KT-l) through (KT-J+) at ao,     which 

implies by part (ii) of Proposition 1 that  (x ,u )  satisfies (5) 

through (7) at a .     By (KT-2) and (KT-^),  [i e M:  A.°>0}OS0 holds. 

By (KT-2),  S0C1 fi e M:  g-(x0) = 0^  holds.  This proves necessity. 

Assume now that 3° satisfies (8) for some (x ,\ ) satisfying (5) 

through (7) at a . By part (i) of Proposition 1, (x ,\ ,5 ) satisfies 

(KT-l) through (KT-M at a ,    which shows that S  is valid at a.Q. 

The alternate version encourages the important observation that the 

5/ 
Kuhn-Tucker Conditions may be viewed as the Lagrange multiplier equations-' 

-' The method of Lagrange multipliers (see, e.g., Apostol, 1957;. P- 153) 
gives a set of first order necessary conditions for a point x0 to be 

an optimal solution of the problem 

Maximize  f(x)  subject to g.(x) =0,  i = 1, ... , m . 
x 

Assume that  f(x)  and g.(x) (i = 1,...,m)  are continuously differen- 
tiable on some open region containing the feasible region, and that the 
matrix whose rows are Vxg^x0),  i = 1, . . . ,m,  is of maximal rank (note 
that this last assumption implies that m < n,  where n  is the dimension 
of x).  If x0  is an optimal solution of the above problem, then 
there exist ii real numbers X.     such that  (x0,X0)  satisfies the 
(Lagrange multiplier) equations: 

Vxf(x) +S ^V^x) = 0 and 
i 

gi(x) =0,     i = 1, ... , m . 

6o 

; 
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applied to a subset S of the constraints, augmented by the inequations 

(KT-3) and (KT-^).  Attention thereby focuses on discovering the 

identity of a valid set, for if one knew a valid set S* then in 

principle one could solve  (=S*)a  for all solutions  (x'ju'), 

among which at least one would satisfy (KT-3) and (KT-h)   and hence 

solve  (IG ).  Indeed, at least one algorithm (see Theil and Van de 

Panne, i960, and also Boot, I961) has already been proposed which is 

essentially aimed at determining a valid set.  However, this approach 

is probably not very efficient computationally, for although it reduces 

the concave programming problem to one of solving sets of simultaneous 

equations, there is a vast number of candidate sets of equations to 

be tried when a valid set is not known.  It seems to be difficult, even 

for problems of modest size, to know how to order the trials so as to 

keep the number of erroneous trials at a reasonable level.  This 

combinatorial difficulty is further aggravated by the numerical burden 

of actually solving  (=s)a .  Thus we may expect the customary gradient 

methods to be more efficient than methods based on the "valid set 

approach." 

Let us turn now to parametric programming.  It is perhaps surprising, 

in view of the immediately preceding comments, that here methods based 

on the "valid set approach" seem to have the advantage over gradient 

methods.  In fact the parametric programming algorithms (cf.  section 5 

of Chapter II) of Markowitz (1956), Houthakker (i960), and Zahl (196^) 

each may be viewed as maintaining the identity of a valid set as a 

parameter is varied. 
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Under appropriate assumptions the optimal solution X*(Q;)  of 

(pa)  and the associated dual variables u*(a)  are unique and con- 

tinuous.  This fact, coupled with the observation that there is only 

a finite number of subsets of constraints, suggests that if S'  is 

valid at a ,     say,  then S'  is likely to be valid in some interval 

including CC .     If this is the case, then one may derive x*(a)  and 

u*(a)  in that interval by solving (=S')a parametrically, and (KT-3) 

and (KT-^) are automatically satisfied.  If this is not the case, 

then even though {=S,)a    may have a solution near a  ,     either (KT-3) 

or (KT-^) will be violated, and it is necessary to find a new valid 

set before being able to proceed.  Because of continuity, moreover, 

a set which is valid near a  will usually differ by only a few 

constraint indices from S'.  This approach leads to a decomposition of 

(Kü)  on  [0,1]  into a chain of parametric subproblems.  Each sub- 

problem involves the parametric solution of the Lagrange multiplier 

equations associated with the constraints specified by a constant valid 

set on a subinterval of [0,1].  By continuity the optimal terminal 

solution to one subproblem is the optimal initial solution to the 

next subproblem of the chain, and the valid sets of adjacent sub- 

problems are both valid at the transition point between them. 

Thus parametric programming can be reduced essentially to the 

problem in numerical analysis of solving parameterized (nonlinear, 

in general) simultaneous equations.  This approach to parametric 

programming turns out to be a useful one computationally, since the 

systems of equations involved will be shown to be well-behaved.  By 
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applying Newton's method (see Appendix C), second order convergence 

can be achieved as the parameter increases by discrete increments^ 

whereas gradient methods display roughly first order convergence. 

2.  A Basic Conceptual Algorithm 

In this section we state and prove a Basic Conceptual Algorithm 

for solving  (KO  for each value of a.    in the unit interval.  We 

use the adjective "conceptual" because computational implementation 

is not considered at this point of the exposition.  The Basic Con- 

ceptual Algorithm can be modified and implemented in various ways, 

as will be. indicated in sections 3 and h,  thus giving rise to an entire 

class of computational algorithms. 

2.1 Assumptions 

We assume that an optimal solution of (Kü)  is available for some 

value of o; in the unit interval, say a = 0  (in view of the dis- 

cussion of subsection 1.1, this assumption is not restrictive). 

Throughout this work the following conditions will be imposed 

upon  (lo;).  We denote the feasible region {x:  g(x) > 0) by, X. 

Condition 1;  The functions  f.(x)  (i = 1,2)  and g.(x) 

(i = 1,...,m)  are analytic on some open region 

Containing X,  and the constraint functions are 

dbncave on E . 

Condition 2:  X is non-empty and bounded. 
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Condition ?:  The hessian matrices-7 Vx ^(x)  (1 = 1,2)  are 

negative definite for all x e X. 

Condition k:     If c^ e [0,1]  and x*(o!o)  is an optimal solution 

of (iö ),  then the matrix whose rows are the 

gradients S/^S^*^)) >     ±    such that 

a   (x*(<X  )) = 0,  is of maximal rank, 
i—o 

A function f(x1,...,xn)  of n real variables is said to be 

analytic in a region R if In some neighborhood of every point of R 

the function is the sum of a convergent power series with real coeffi- 

cients.  The class of all analytic functions Includes, for example, 

all polynomials, and seems amply wide enough to include nearly any 

continuous function likely to be encountered in applications. 

Conditions 1 and 2 imply, by A.1 of Appendix A, that X is 

convex and compact. 

Condition 5 implies, by A.5, that ^ and fg are strictly 

concave on X.  This, in turn, implies by A.^ that f(xja) = af-^x) + 

(l-a)f (x)  Is strictly concave on X for each fixed value of 

a e [0,1].  In the presence of Conditions 1 and 2, this last assertion 

remains true even on some open interval containing [0,1],  as 

Proposition 5 shows. 

Proposition g: 

Assume that Conditions 1, 2, and 5 hold.  Then \/xf(x;a)  Is 

_ 

y2 f(x)  denotes the n by n matrix whose ij-th element is 

ö2f(x) 

äx.3x. 6k 



negative definite on X for each fixed value of a in some 

open interval containing [0,1]. 

 o 
Proof:  It is well-known that \7 f(x;a)  is negative definite at 

p 
(x,a)  if and only if all of its eigenvalues  5 (y  f(xja))  (n = 1,...,n) 

p 
are negative, i.e., if Max | (y  f(xja)) < 0.  Assume for the moment 

p.   H v x  — 

that the last-mentioned function is continuous in  (x,a)  on some open 

region containing X x [0,1], where x denotes the Cartesian product. 

Since a positive sum of negative definite matrices is again negative 
o 

definite, from Condition 5 it follows that Max | (\/  f(x;a)) < 0 
[i n  x 

on X x [0,1].  The proposition follows from this fact, the assumed 

continuity, and the compactness of X x [0,1]. 

To see that Max i   (\7 f(x;a))  is continuous on some open 

region containing X x [0,1],  observe that Condition 1 implies that 

the elements of V7  f(x;a)  are all continuous on some open region 

containing  X X [0,1].  Since the eigenvalues of a square matrix are 

continuous functions of its elements (Ostrowski, i960, p. 192), 

I (y  f(xja))  (|i = l,...,n)  is therefore continuous on some open 

region containing X X [0,1]j  the same must be true for 

Max  £ (VL f(x;a)). |i    M-  x  — 

Remark:  As indicated in Footnote 1 of this chapter. Condition 3 may 

be weakened to (in the following,  e > 0  is arbitrarily 
 . p p 

small):  (a) \J     f,(x) (y  f (x))  is negative (semi-) 

definite for all x e X,  if  [0,1]  is replaced by  [e,l]. 
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or (b) y^ f2(x) (y^ f-^x))  is negative (semi-) definite 

for all x e X,  if [0,1]  is replaced by [0,1-e],  or 

(c) ay2 fAx)   +  (l-a)y2 f2(x)  is negative definite for 

all x e X at each a e  (0,1),     if [0,1]  is replaced 

by [e,l-e]. 

Condition k  is equivalent to requiring that the gradients 

V7 s (x*Ca )),  i  such that g.(x*(a )) = 0,  must be linearly 
Vx  i —  o i —  0 

independent; hence at most n  constraints can be satisfied with 

exact equality at an optimal solution of  (R^).  In the remark 

following the Kuhn-Tucker Theorem, it was noted that this condition 

implies that the Kuhn-Tucker Constraint Qualification holds.  Thus 

the hypotheses of the Kuhn-Tucker Theorem are satisfied by  (KXQ) 

for each fixed ao e [0,1] when Conditions 1, 5, and k  hold. 

2.2  Statement of the Basic Conceptual Algorithm 

For convenience we view a  as increasing from 0 toward 1. 

Step 1:  Solve  (Po)  by any convenient method, so that 

(x*(0), u-*(0), S*)  satisfying (KT-l) through {KT-k) 

at a = 0  is at hand.  Put a0  =0,  3° = S*,  and 

(x,u)0 = (x^(0), u*(0)). 

Step 2:  Solve equations  (=S0)a by any convenient method as 

a increases above a0  for the unique continuous 

solution^'  (x  (a), u (a))  satisfying the left 

 _ __ — ■ g q 

£/ Throughout this work we employ the symbol  (x (a), u (a))  to 
denote a solution of equations  (=S)Q;. 
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end-point value  (x,u)   so long as this solution satisfies 

(KT-5) and (KT-^)j that is, until a = a',    where 

A „  ,    o     , s0 
a' = Max (a: a < a < 1, gi(x

ü (a)) > o, v i ^ s , 

qo 
u^ (a) > 0, Vie 3° on [a0, a']} 

If a' = 1,  terminate.  Otherwise put  (x,u)0 = 

(x (a'),  u (a'))  and go to Step 5- 

Step 3:  Solve equations  (=S)a by any convenient method as 

a.    increases above a'  for the unique continuous 

S     S 
solution (x (a), u (a))  satisfying the left end-point 

value (x.,u)       for different sets S which satisfy 

(8.1)        {i e M:  u^ (a') > 0} C S C {i e M:  g.^V')) = 0} 

until for some S',  (xS (a), uS (a))  satisfies (KT-5) 

and (KT-k)   on [a',a'+£]     for some  e > 0.  Put 

a0 = a',     S0 = S',  and return to Step 2. 

The next subsection is devoted to the development of the theo- 

retical results necessary for justifying this conceptual algorithm. 

Complete justification requires proof of the following 

Theorem (Basic): 

Assume that Conditions 1 through k  hold.  Then the following 

assertions regarding the Basic Conceptual Algorithm hold: 
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(i)  Step 2 is well-defined. 

3° 
(ii)  At each execution of Step 2,  (x (a), u (a)) = (x*(a), 

u*(a)) on [a.°,a']. 

(iii)  Step 3 is well-defined. 

(iv)  Step 3 will be executed only a finite number of times 

before termination obtains. 

2.3  Theoretical Development 

Continuity plays a crucial role in parametric programming. 

Theorem 1 (Continuity): 

(i)  Assume that Conditions 1 through 3 hold.  Then  (Rx)  has 

a unique optimal solution X*(a),  and X*(a)  is continuous 

on some open interval containing  [0,1]- 

(ii)  Assume that Conditions 1 through k  hold.  Then  (Rx)  has 

unique dual variables u*(a)  (i = 1,.. . ,m)  such that 

(x*(a), u*(a))  satisfies the Kuhn-Tucker Conditions (5) 

through (7), and u*(a)  is continuous, on some open interval 

containing  [0,1]. 

Proof:  First we prove (i).  The existence of an optimal solution 

of  (KO  for any fixed value of a    follows from the fact that 

f(xja)  is a continuous function of x on the compact set X.  The 

uniqueness of the optimal solution follows by A.2 from the fact that 
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f(xja)  is strictly concave in x over the convex set X for each 

fixed value of a in some open interval ti- containing [0,1].  Denote 

the unique optimal solution by x*'(a) • 

To demonstrate that x*(a)  is continuous on (Jc ,     suppose 

V     — V 
the contrary.  Then there exists a sequence < a > -* a with a , 

ä e b£   such that < x*(aV) >/x*(a).  Hence there is an (open) 

neighborhood N(x*(ä))  of x*(a) such that x*(aV) ^ H(x*(ä)) 

infinitely often, and by taking a subsequence, if necessary, we may 

assume that this holds for all v.  Since-/ X-N(x*(a))  is compact 

we may assume, again taking a subsequence if necessary, that 

< x*(Q;V) >-» x' e {X-N(x*(ä)) }.  Thus by the continuity of f(xja) 

with respect to  (x,o;),  we obtain 

(9) < f(x*(av)jav) >-*f(x,ja) . 

Now f(x*(a)ja) =  Max  {f(xja)  subject to g(x) > 0}  is the 
x 

supremum of a family of functions linear in a,     and therefore is 

convex in a on at.     Using A. 5, we obtain 

(10) < f(x*(aV);aV) > - f(x*(a);ä) . 

Assertions (9) and (10) imply that f(x';ä) = f(x*(ä);ä);  but by 

construction x' ^ x*(ä),  so that the unique optimality of x*-{a) 

w When used with sets, the symbol "-" denotes relative complement. 
Thus X-N(x*(a)) = (x € X:  x ^ N(x*(a))]. 
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tes is violated.  Hence x*(a)  must be continuous on t£  This complete 

the proof of (i). 

Now we prove (ii).  The existence of u*(a)  such that  (x*(a) > 

u*(a))  satisfies (5) through (7) on some open interval containing 

[0,1] would follow from the necessity of the Kuhn-Tucker Conditions 

if the hypotheses of the Kuhn-Tucker Theorem were satisfied by  (Kx) 

on such an interval.  It was noted in subsection 2.1 that these 

hypotheses are satisfied for each value of a e [0,1].  To show that 

this remains true on some open interval containing  [0,1],  in view 

of Condition 1, Proposition 3, and the remark following the statement 

of the Kuhn-Tucker Theorem, it is enough to show that Condition k   is 

still satisfied on some open interval containing each end-point. 

Consider the left end-point a = 0.  Denote by D(a)  the matrix whose 

rows are ^ g.(x*(Q;)),  i such that  gi(x*(0)) = 0.  By Condition it- 

applied at a = 0,  D(0)  has rank equal to the number of its rows, 

which is equivalent to the existence of [D(o)D (O)]" ,  which is 

equivalent to the determinantal inequality  |D(O)D (O)i ^ 0.  Since 

|D(a)Dt(a)|  is a continuous function of a    for a sufficiently 

near  0,  it does not vanish in some open interval containing a = 0, 

and so  D(a)  remains of maximal rank on such an interval.  This 

implies that Condition it- holds on some open interval containing a = 0, 

for by the continuity of x*{a)     and of gi(x),  and hence of 

g (x*(o0),  one easily obtains that  (i:  g1(x*(a)) = OlCS 

(i:  g.(x*(0)) = 0}  for a  sufficiently near  0.  A similar argu- 

ment applies to a = 1. 
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To show the uniqueness and continuity of u*-(o!)  on some 

open interval containing [0^1],  fix a e [0,1].  Since x-*(a)  is 

unique, from (7) we conclude that VL*{a  ) must vanish for each i 

such that g.(x*(Q; )) > 0.  By the continuity of g.(x*(a)),  we 

have that g.(x*(a)) > 0 on some open interval about a      when 
1 — o 

g.(x*(ao)) > 0.  Hence ut(a)  vanishes on some open interval about 

ao for each i  such that g (x*(a )) > 0.  Denote  (i:  g.(x*(a )) = 0} 

by B.  It remains to consider u*(a),  i e B.  From (5) and (7) one 

obtains 

(11) Vxf (**(ao) ;ao) + S ^c)   V^ (£*(«)) =0 • 
ieB 

Since by continuity  (i:  g.(x^(a)) = 0}C(i:  g (x*(a )) = 0} = B 

for a sufficiently near a ,     it follows from (5) and (7) that (ll) 

must hold in some open interval about a.      with the same summation set. 

That is, 

(12) \]f{x.*{a);a) +   2  u*(a) Ug.(x*(a)) = 0 
X ieB 1    x "^ ~ 

holds on some open interval about a  .  Write u*(a)  for the row 
o —B 

vector whose components are U*(a),  IeB.  Then (12) can be rewritten 

in matrix notation as 

(12.1) u|(a)D(a) = - yxf(x*(a)ja) . 

Repeating a previous argument, one may assert that  [D(a)D (a) ]" 

exists on some open Interval containing a  .  Postmultiplylng (l2.l) 
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by D (a)[D(a)D (a)]" ,     one obtains that ut(cu3  must satisfy—^ 

(12.2)    u*(a) = - yf(x*(a);a)Dt(a)[D(a)Dt(a)]-1 

on some open interval containing OC . The right-hand side is unique 

and continuous in OL, and therefore U*(Q;) is also unique and con- 

tinuous on some open interval containing a . 

It will prove convenient to introduce some special notations. 

Define Aa    to be the set of constraint indices corresponding to the 

constraints which are active at a    in the sense that their dual 

variables are strictly positive: 

Aa = (i e M: u*(a) > 0} . 

Define Ea to be the set of constraint indices corresponding to the 

constraints which are binding at X*"(Q;) : 

BCC = {i e M:  g.(x*(a)) = 0} . 

The sets Aa and Ba are well-defined on some open interval con- 

taining  [0^1]  because of the existence and uniqueness of  (x*(a); 

u*(cc))  on some such an interval.  We can now state two important 

corollaries of Theorem 1. 

Corollary 1.1: 

Assume that Conditions 1 through k  hold.  Then for each a  e [0,1] 

—' Equation (12.2) is Intended only for theoretical and not compu- 
tational use. 
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there exists an open interval containing a  such that, on 

this interval, 

Aa  (H Aa d Ben CUBa . o —  _  ;= o 

Proof:  The outermost relations follow directly from the definitions 

of Aa and Ba and the continuity of x*(a)  and u*(a).  The middle 

relation follows from (7)• 

Corollary 1.2: 

Assume that Conditions 1 through h  hold.  Then there is an open 

interval containing [0,1]  such that, for each fixed value of 

a in this open interval, a subset S of constraint indices is 

valid at a    if and only if AccCIS CIBa. 

Proof:  This assertion is an immediate consequence of the unique- 

ness of  (X*(Q;), U*(QO). and Proposition 2. 

The significance of Corollaries 1.1 and 1.2 Is that the totality 

of valid sets at a    e [0,1]  contains the totality of valid sets 

for a sufficiently near a  .  Hence the optimal solution of  (Rx ), 

which yields  Aa  and Ba ,  gives a strong indication of the identity 

of a valid set for a    near CC  . o 

The next theorem shows that equations (=S)a can be solved on 

some open interval about a e [0,1]  if S is valid at a . 
o o 

Theorem 2: 

Let a  e [0,1] be fixed, let S be valid at a  ,  and assume o o 

Conditions 1 through k  hold. 
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Then there exist an open interval la  containing and symmetric 

about a ,     and an open neighborhood W(x*(a ), U^QLO)  containing 

(x*(a ), u*(a )),  such that on la  there is a unique function v— v o  —  o o 

(xS(a), uS(a))  in N(x*(a ), u*(a ))  which satisfies  (=S)a. 

Furthermore,  (x (a), u (a))  is analytic on la . 

Proof:  The theorem would follow directly from a version of the 

Implicit Function Theorem (Bochner and Martin, 1948, p. 39) applied 

to the equations  (=S)a if the following hypotheses of that theorem 

were satisfied: 

(a) (x*(a ), u*(a ))  satisfies  (=S)ao. 

(b) The left-hand side of each equation of  (=S)a Is analytic 

in (x,u,a)  in an open neighborhood of  (x*(a ), u*(a ),0.^ . 

ö((=S)a ) 
(c) The Jacobian —« 5— is non-zero at  (x*(ao), u*(ao)). 

By the validity of S  at a0,  part (i) of Eroposition 1 and Corollary 

1.2, (a) holds.  It follows from Condition 1 that (b) holds.  To 

simplify the task of showing that (c) holds, we regroup the order of 

partial differentiation , which is equivalent to regrouping the columns 

of the Jacobian matrix, so that we actually consider the Jacobian 

ö((=s)a ) 
 _ — .  Writing H for the n by n hessian matrix 
ä(xj u., ieS^ u., ±fS) 

. m -v 

and D for the matrix whose rows are S^^Z^h^k^^i) >     i e S,  one 
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readily derives that this Jacobian, evaluated at  (x*(aQ), u*(Q!0)), 

is the determinant of the matrix  (we use dotted line to denote 

partition) 

H       j      D* 

D              0 

1 
O

  
|  

 o
 

0       1      0 
i 
i     I 
i 

where 0 and I are zero and identity matrices of the appropriate 

orders.  The determinant is non-zero if and only if 

-tT 

[ 
D 

0 

is invertlble, which is true if and only if the matrix equation 

[H-M 
has y = 0,  z = 0 as its only solution, where y is an n-vector 

and z  is a vector with a number of components equal to the number 

of constraint indices in S.  The proof of the theorem will be com- 

plete when we show that (13) has only the null solution. 

Performing the indicated block multiplications for (15), one 

obtains 

(15.1) 

(15-2) 

Hy + D z = 0 and 

Dy = 0 
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Now H is negative definite, for it is a positive linear combination 

of negative semidefinite hessians^ at least one of which is known to 

"be negative definite.  Hence H is invertible, and (13.1) yields 

(13.3) 1  = -H'Vz . 

Eremultiplying (13-3) by D and using (13-2), one obtains 

(13.1+) ry = -DH~1Dtz = _0 . 

By Corollary 1.2, Pa   ^S^B3;o.  By Condition 1+, therefore,  D 

is of maximal rank, and that rank equals the number of rows of D. 

Hence  [DH-^]  is invertible, and (13-^ yields  Z = 0.  By (13-3h 

y = _0 also.  Thus (l?) has only the null solution. 

Corollary 2.1: 

Let a e [0,1]  be fixed, let  S be valid at a ,  and assume 
o 0 

that Conditions 1 through k  hold. 

Then there exists an open interval containing Q^  and contained 

in la  such that, for each fixed value of a    in this interval, 
o 

the following three assertions are equivalent: 

(i)  S  is valid at a. 

(ii)  (xS(a), us(a)) = (x*(a), WoO) . 

(iii) gi(x
S(a)) > 0, v i / S 

uS(a) > 0, V i e S . 
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Eroof;  (i)=> (ii).  By continuity,  (x*(a), u*(a)) e N(x*(a ), 

u*(Q! ))  for all a sufficiently near a. ;     by the validity of S 

at a,     part (i) of Eropositlon 1, and Corollary 1.2, one concludes 

that  (x*(a), u*(a))  satisfies  (=S)a;  since the solution of 

(=S)a is unique in W(X*(Q; ), u*(a ))  for a e la ,  assertion 

(ii) follows. 

(ii)*^ (iii).  Because  (x*(a), u*(a))  satisfies (5) through 

(7), (iii) must hold. 

(iii)—> (l).  Assertion (iii) and the fact that  (x (a), 

u (a))  satisfies  (=S)a imply by the definition of validity that 

S is valid at a. 

One more result must be established before a complete proof of 

the Basic Theorem can be given. 

Define a point of change of Ba as a point a'  with the pro- 

perty that there is no open interval containing a'     such that 

m = Ba'  everywhere on that interval.  A similar definition holds 

for a point of change of Pa.     In the sequel, the phrase "point of 

change" is used to refer to either a point of change of Aa or of 

Ba,  or possibly of both. 

Theorem 3 (Finiteness): 

Assume that Conditions 1 through k  hold.  Then Aa and Ba 

each have a finite number of points of change on [0,1]. 

Proof;  Suppose that  Ba has a finite number of points of 

change on  [0,1].  Then there is a cluster point ä e [0,1]  of 
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these points of change.  Let < aV >,  aV € [0,lL  ^ a sequence of 

distinct points of change of BX    which converges to a.     Applying 

Corollary 1.1 at aV,     we see that there exists an open interval 

containing aV    suchthat A^^ ito CI Ba ClBQ^ on this interval. 

By the definition of a point of change of m,     for each Q!V there 

v ■        r  v       1- exists a number  ß  contained in this interval and xn [a    - —> 

aV + -)     suchthat A3;V^AßV^BßVC^mV  (note that  BßV  is a 

proper subset of BCi;V).  Clearly < ßV > - ä.  From Corollary 1.1 

applied at 5, we see that we have demonstrated the existence of 

two sequences <(/>-«,  < ßV > -> ä,     such that Aä C.PaV^ 

AßV C BßV C: BaV CZ Bä for all V  sufficiently large.  Since there 

is but a finite number  (2m)  of possible sets which Bß  or B3 

could possibly be^ we may assume, taking a subsequence if necessary, 

V        v 
that there exist sets  B'  and B"  such that  Bß = B" d BCX = B 

for all V. 

Consider the function xB (a)  defined as in Theorem 2 applied 

— V V 
at a.  Since B"  is valid at a    and at all a  and ß ,  V 

sufficiently large,  xB (a) = x*(a)  at these points.  Take  lo £ B'-B". 

Then g. (xB"(aV))=0 and g, (xB"(ßV))>0,  all v  sufficiently 

O T,"  _ 0 

large,  and g. (x  (a)) = 0.  In other words, we have shown that 
1o Bn 

5 Is a non-isolated zero of g. (x (a)),  and that this function is 
o 

not identically zero on any open interval about a.     But this leads 

to a contradiction of the well-known fact (Apostol, 1957, p. 5l8) that 

the zeros of an analytic function which is not identically zero are 

isolated, for by Theorem 2 and Condition 1 we have that  g  (x (a)) 
o 
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is analytic on some open interval about a. Hence the supposition 

that Ba has an infinite number of points of change on [0,1] is 

false. 

A similar argument shows that Aa cannot have an infinite number 

of points of change on [0,1]. 

Applying the result of Theorem 3 to a given  (BGü) ,  define 

0 < cc1  < a'  < • • ■   < a'  < 1    to be the collection of all points of 

change of Act or Ba: or both.  As a matter of convention we take 

a'   = 0 and a'   .,   =  1.  From Corollaries 1.1 and 1.2 we conclude that 
o N+l 

any set which is valid at a,  a'. < a < CC'.  ,  is also valid on the 

entire closed interval  [a'., a'  ].  In addition, it may also be 

valid on other intervals, of course.  Among the sets which are valid 

at a',     there are all those which are valid on  [a1. -,, a'.]  or on 
3 0-1  3 

[al, al+1]. 

We are now in a position to prove the Basic Theorem. 

Proof (Basic Theorem):  First we prove parts (i) and (ii).  At 

the beginning of each Step 2,  (x,u)   and S   satisfy  (KT-l) 

through (KT-^) at a ,  so that S  is valid at a  and (x,u) 

(x*(a0), U*(Q; )).  Let J,  1 < J < N+l be the largest integer such 

that  3°  is valid on [a , a']     (a' = a' = a =0 is permissible 
J        d       J- 

the first time Step 2 is executed).  Applying Theorem 2 at each point 

of  [a , a'],  it follows that  (=S )a has a unique analytic solution 

3°     o0 o 
(x  (a), u0 (a))  satisfying the left end-point value i^^)       on some 

interval containing  [a , a'].  This solution satisfies (KT-3) and 
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(KT-4) and equals {x*(a),   u*(a))  on  [a0, a'] by Corollary 2.1. 

If a'   = 1,     the solution of  (Pcü)  on [0,1]  is complete.  If 
J 

gO gO 
oc'  < 1,     however,  (x  (a), u  (a))  does not satisfy (KT-3) and 

(KT-4) for any a e (a', OC'     ),     for otherwise by Corollary 2.1 

applied at a*,     S  would be valid on  [cc', a;*  ]^  which would j j   J+I 

violate the definition of J.  Clearly the scalar a'     defined in 

Step 2 is precisely a',     and (i) and (ii) hold. 
J 

Next we prove (iii).  Any set S which satisfies (8.1) is valid 
qO qO 

at a',     by Corollary 1.2 and the fact that  (x (a'),  u (cc1)) = 

(x*(a'), U*(a'))-  Applying Theorem 2 at a',  we see that if S 

satisfies (8.1) then  (=S)a has a solution as stated on [a',  «'+€-,] 

for some en > 0.  By Corollary 1.1 we know that at least one such 

S,     say S',  is valid on [a',  «'+£„]  for some 0 < ep < e, ;  by 

Corollary 2.1 applied at a',      (x  (a), u  (a))  satisfies (KT-3) 

and (KT-^) on [o;', a'+e]  for some 0 < e < ep.  Since there is but 

a finite number of sets satisfying (8.1),  S'  will be found after a 

finite number of trials. 

Finally, we prove (iv).  It was established in the proof of (i) 

that Step 5 is entered each time a point of change a1  is encountered 

at Step 2 such that the current set S  being used at Step 2 is not 

valid immediately above a'.     It was established in the proof of 

(iii) that Step 5 finds a set which is valid immediately above CC' 

in a finite number of trails, and control is returned to Step 2 along 

with the new valid set.  By convention we have taken a increasing, 

and by Theorem 3 there is but a finite number of points of change on 
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[0,1];  ^ follows that Step 3 will only have to be executed a finite 

number of times before termination obtains. 

Remark:  At Step 2, a'  need not be the next point of change above 

a0,  for 3° may remain valid on an Interval spanning several 

points of change.  The algorithm could be modified to require 

3° = BCü at Step 2.,   so that a'  would assume, in turn  cne 

values of each point of change of Ba;  or one could require 

S0 = Aa at Step 2.,   so that a'  would assume, in turn, the 

values of each point of change of Pa.     The minimum require- 

ment (the one adopted here) is AQi C S0OBQ: at Step 2, and 

seems more symmetrical and less arbitrary than either of the 

extreme requirements just mentioned. 

From the proof of the Basic Theorem, it is clear that the Basic 

Conceptual Algorithm can be paraphrased as follows. 

Step 1:  By any convenient method, find the optimal solution 

(x*(0), u*(0))  of  (Po).  Set a0 = 0,  3°  equal 

to any set valid at a = 0,  and  (x,u)0 = (^*"(0)' W0^ 

Step 2:  Solve  (=S0)a as a increases above a  for its 

unique continuous solution satisfying the left end-point 

condition  (xS (a0), uS (a0)) = (x,u)0,  namely 

(x*(a), u*(a)),  until either a = 1 or a point of 

change a'  of Aa or  BCt is encountered to the right 

of which 3°  is no longer valid.  In the first case, 
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terminate; in the second case, set  (XJ>U)  = {x*(a'), 

u-^a'))  and go to Step 3- 

Step 3: Among all sets valid at a', find one which is valid to 

the right of a'. Call it S'. Set a0 = a', 3° = S', 

and return to Step 2. 

See Appendix B for graphical illustrations of this algorithm. 

Now that the Basic Conceptual Algorithm has been theoretically 

justified, we take up computational considerations. 

5.   A Basic Computational Algorithm 

In order to implement the Basic Conceptual Algorithm, it is necessary 

to have a method of actually solving (=S)a as a changes parametric- 

ally . Only in certain simple cases is it possible or economical to 

solve these equations analytically, and so usually numerical methods 

must be used. We recommend Newton's method, or a variation thereof, 

as an efficient means of solving (=S)a on a digital computer as a 

changes by small discrete jumps. 

After proving the applicability of Newton's method, we state and 

prove a Basic Computational Algorithm.  Some necessary computational 

refinements are then briefly indicated, with further details being 

added in Appendix C. 

5.1 Newton's Method 

Newton's method is briefly reviewed in Appendix C.  Under Conditions 

1 through k,   it is easily seen from Theorem C.l of Appendix C and the 

proof of Theorem 2 that for each ao e [0,1],  Newton's method applied 
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to  (=S)a  is well-defined and quadratically convergent to (**{%)> 

u.*(a  ))  if S is valid at a  and if the starting point  (x,u)  is 
— o 0 

in a sufficiently small neighborhood of  (x*(ao), ^*{%))■     Since 

(x*(a), u*(a))  is continuous, by taking £a    small enough (x*(ao-^0!), 

u*(a -£a))     is such a starting point.  In other words, Newton's method 
— x   o 
is applicable point by point.  Does there exist m > 0 such that a 

- computational algorithm can be designed using Newton's method to solve 

(=S)a with ZVv as a fixed step size throughout? The answer is 

affirmative, and requires a proof that the size of the neighborhoods 

mentioned above may be taken to be bounded away from zero. 

Theorem k.l; 

Let Conditions 1 through k  hold, let ao e [0,1]  not a point of 

change be fixed, and let S be valid at Q^. 

Then there exists a scalar r' > 0,  which does not depend on 

a  or on S,  such that Newton's method applied to equations  (=S)o!o 
o 

is well-defined and quadratically convergent to (x.*^),   u*(ao)) 

if the starting point  (x,u)0 is in the (n+m dimensional) neighborhood 

\A**iao),  u*(ao)). 

Proof: 

1.  We shall use the notation and observations immediately following 

the proof of Theorem 5-  To prove this theorem it is sufficient to 

show that for each j  (j = 0,...,N)  there exists a scalar r(j) > 0 

such that the following assertions hold on N^) (£*(%) ^ ".*(%)) 

for any fixed a e [a', a'  ]  and any S valid on [a'., a'.^]: 
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(a) The left-hand side of each equation of  (=S)ao is 

twice continuously differentiahle with respect to 

(x,u). 

ö((=s)ao) 
(b) The Jacobian -^-7 r  f  0. v d(x,u) 

(c) A(x,U} a ,S) < L < 1, where A(x,u;Q:o,S)  is a certain 

upper estimate of the norm of the Jacobian matrix of the 

iteration function derived by applying Newton's method 

to  (=S)a  (see section 1 of Appendix C). v    o 

To see why this plan is sufficient, let r' = Min{r(o);...,r(w)}, 

let a  s [0,1]  not a point of change be fixed, and let  S be valid 
o 

at a .  Then for some j between 0 and N we have that S is 
o 

valid on [a1., al+1]  and c^ e [a', a'+1].  Applying Theorem C.2 of 

Appendix C, we see that Newton's method applied to  (=S)ao is well- 

defined and quadratically convergent to  (x*(ao), U*(ao))  if the 

starting point  (x,u)0 e Wrt(x*(ao), u*(ao)). 

2.  Let 2     be fixed,  0 < j < N,  let ao e [a^, Ot.^],     and 

let  S be any set which is valid on  [al, al+1]. 

By Condition 1, the left-hand side of each equation of  (=S)ao 

is twice continuously differentiable with respect to  (x,u)  on some 

open neighborhood of  (x*(0!o), u*(ao)). 

ö((=s)a ) 
The Jacobian -X7 ~- ^ 0  at  (x*(a ) , u*(a ))  by the proof 

o(x,u) u 

of Theorem 2.  As a consequence of Condition 1, this Jacobian is con- 

tinuous with respect to  (x,u)  on some open neighborhood of  (x*^), 

u*(a ))-  One concludes that the Jacobian does not vanish in some open 

neighborhood of  (x*^), ]!*(%) ) • 
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k,V£""^^:v:;:W:,^MA'; 

'" '  j 

It can be shown in a straightforward manner (see Henrici^ 196^ 

p. 106) that A(x,u; a ,S)  vanishes at  (x*(ao), u*(ao)).  By Condition 1 

this function is continuous with respect to  (x/u)  on some open neigh- 

borhood of  (x*(a ), u*(a )).  One concludes that A(x,U} ao,S) < L, 

where 0 < L < 1,  on some open neighborhood about  (X*(Q;O) , u*(Q!Q))- 

Summarizing this part of the proof, we assert that (a), (b), 

and (c) hold on some open neighborhood of (x*(o( ), u*(ao)) when 

a  e [a!, a'. A     and S  is any set which is valid on [al, ^^J- 

3.  Since  (x*(a), u*(a))  is continuous on the compact set 

[al, CZ'  ],  the image set 

r = ((x,u):  (x,u) = (x*(a),u*(a)) for some a,a^ 5 a 5 a^} 

is compact.  It follows from the compactness of T  and the result 

of part 2 of this proof that there exists a scalar r(j) > 0  such 

that (a), (b), and (c) hold on Wr^ (x*(o:o), u*(ao))  when 

a e [a', a'. ,]  and S is any set which is valid on [a', a' •,]. 
o    j  j+1 J  J"1--1- 

When Conditions 1 through h  hold, we define i±    to be the minimum 

distance between any two points of change on [0,1],  and l^    to be 

the length of the shortest of all the intervals 10^ defined in Theorem 2 

applied at every point of change on  [0,1] with each set which is 

valid at each point of change.  Define ^ = 3 MinCi^ig).  Note that 

(xS(a), uS(a))  is uniquely defined, by Theorem 2 applied at a', 

on la'. = [a'. - I, a'. + i],  for any 1 < 0 5 N and any S valid 

at a'. 
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Theorem k.2 ; 

Let Conditions 1 through h  hold, let a1 e [0,1] "be a partic- 

ular  point of change, and let  S be valid at a'. 

Then there exist scalars r" > 0 and 0 < i" < £,     which do 

not depend on a'  or on S,  such that Newton's method applied 

to  (=S)a  is well-defined and quadratically convergent to 
o 

(xS(a ), uS(a ))  if a e [a'-i", a'+i"] and if the starting point 

(x,u)0 e  Nr„(x
S(ao), u

S(ao)). 

Proof: 

1. Since there is a finite number of points of change on  [0,1] 

and a finite number of valid sets at each, it is sufficient to show 

that the theorem holds with r  and £    possibly depending on a' 

and S.  This will be done by applying Theorem C.2 of Appendix C. 

2. Let a' e [0,1]  be a particular point of change, and let 

S be valid at a'.  It remains to demonstrate the existence of scalars 

r > 0  and 0 < £ < £     such that the following three assertions hold 

on N (xS(a ), uS(a ))  when a e [a'-i, a'+i]: 
r —  o  —  o o 

(a) The left-hand side of each equation of  (=S)Q!  is 

twice differentiable with respect to  (x,u). 

ö((=s)a ) 
(b) The Jacobian   f  0. 

ä(x,u) 

(c) A(x,u; a ,S) < L < 1. 

5.  In view of the fact that  (XS(Q;'), uS(a')) = (x*(a'), u*(a')), 

we may argue as in part 2 of the proof of Theorem ^.1 that (a), (b), 



■ . 

IP' 

and (c) hold for a^  = a1  on some open neighborhood of  (x (<X*) 9 

uS(a')). 

o 

k.     Since  (x (a), u (a))  is continuous on the closed interval 

la',  and therefore uniformly continuous, one may assert the existence 

o f scalars r > 0 and 0 < £ < £    such that (a), (b), (c) hold on 

N (xS(a ), US(Q: )) when a    e [la'-i, a'+2]. r —  o  —  o o 

By specializing Theorem k.2  to a = a',     and recalling that 

(xS{a'),  uS(a')) = ix*(a'),  u*(a'))  when S is valid at a',  it 

is evident that Theorem i+.l is Still true if a  is permitted to be 
o 

a point of change.  Since  (x*(o(), u*(a))  is continuous on [0,1], 

it is uniformly continuous on [0,1],  and one immediately obtains 

the following corollary of Theorem k.l. 

Corollary ^.1: 

Let Conditions 1 through k  hold, let a e [0,1],  and let  S 

be valid at o; . 
o 

Then there exists a scalar 8' > 0,  which does not depend on 

a      or on S,  such that Newton's method applied to  (=S)a  is 

well-defined and quadratically convergent to  (x*(a ), u*(a )) 

if the starting point is {\x.*{a  -6), u*(a -8))  and  |5| < 5', 

o < a -s < l. — o  — 

A similar argument shows that Theorem ^.2 yields the following 

corollary. 
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Corollary h.2: 

Let Conditions 1 through k  hold, let ' a' € [0,1] ^e a particular 

point of change, and let  S be valid at a'. 

Then there exist scalars 5" > 0 and 0 < i" < 1,     which do not 

depend on a'  or on S,  such that Newton's method applied to 

f-S)a  is well-defined and quadratically convergent to v   o 

(xS(a ), uS(a ))  if a e [a'-i", a'+i"] and if (x*(a -S), x_vo  —   o o ^ 

u*(a -&))  is the starting point and  |5| < B",  0 < Q^-S < 1. 

J.2 The Basic Computational Algorithm 

Using the results of the previous subsection, we can design a 

computational counterpart of the Basic Conceptual Algorithm by using 

Newton's method to solve  (=S)a as a    increases by steps of size 

AX  A useful idealization is obtained by assuming that there is no 

computational error.  In view of the quadratic nature of the convergence 

of Newton's method, it is no less plausible to assume that Newton's 

method converges to an exact solution of  (=S)a when it theoretically 

should converge-.--/ An annotated flow chart of the Basic Computational 

Algorithm is given in Figure 1. 

Theorem 5 ; 

Assume that Conditions 1 through k  hold, that there is no compu- 

tational error, and that Newton's method converges to an exact solution 

of  (=S)a when it theoretically should converge. 

17 This assumption is strictly true only when ^ and fg  are quadratic 
polynomials and all constraints are linear, in which case  (=S)a is a 
set of linear equations in  (x,u)  and Newton's method therefore leads 
to an exact solution in a single iteration. 



Then there exist  e > 0 and £a > 0     such that the Basic Compu- 

tational Algorithm is well-defined and will terminate with JAx = 1 

in a finite number of computational steps. 

Proof:  Put 

e = i   Min   {u*(a'.)} 
1  ^ 1 < j < N  1  ü 

i e Aal 

By construction,  e > 0.  By the uniform continuity of u*(a) 

(i = l,...,m)  on  [0,1],  there exists a scalar  51 > 0  such that 

la-all < 51  implies  |u|(a)-u|(a^) i < e1  (i = 1,...,m)  for any j 

(j = 1,...,N).  Put 

ep = ^   Min   g (x*(al)) . 
L -   ^ 1 < j < N  !     J 

i^Ba- 

By construction,  e^^ > 0.  By the uniform continuity of gi(x*(a)) 

(i = l,...,m)  on  [0,1],  there exists a scalar  52 > 0  such that 

|a-al| < S2 implies Ig^ia))   -  &±ix*{ap)\   < e2     (i = 1,. . . ,m) 

for any j  (j = 1,...,N). 

Put  e* = Min(e ,e ]  and Aa*'= l/K,  where K is the smallest 

integer satisfying K > 2/M±n{&1,&2,&',&",£"].     In view of the Basic 

Theorem, to prove this theorem it is sufficient to show that for these 

choices of  £ and Aa: Newton's method is well-defined and sure to 

be convergent as stated in Steps 2 and 3,   and that the trials at Step 3 

must lead to a success. 



At each application of Newton's method during Step 2, 

(x7-1, u7'1) = (X*((J-1)AX), u*((j-l)A3))  and 3° is valid at 

cc = (j-l)£a.  If 3° is valid at j/xx,     then since Zto*- < 6'  we 

have by Corollary k.l  that Newton's method is well-defined and con- 

vergent to  (x*(j£o;), u*(j£Q!)).  If 3° is not valid at J&x, 

then since Aa* < X" < ^  there must be exactly one point of change 

a' < 1 on [{j-l)£a,  J/XX];     but  3°  is valid at a1, A3* < t", 

and £a* < &',     so by Corollary if.2 Newton's method is well-defined 

3°       3° 
and convergent to  (x {j£a),  u (JA3:)),  and Step 3 is entered.  By 

the choice of  €*.,  A = Aa'  and B = Ba'.  Corollary l+,2 again applies, 

and ensures that Newton's method is well-defined and convergent to 

3       3 
(x (JA*), u (J£a.)}     when AC S  QB.  The trials are sure to lead to 

a success because some set which is valid at a'     must also be valid 

at J£a,     since a'  is the only point of change on [ (j-l)A3!, JAa;]. 

A word is in order about the consequences of taking € and AD; 

different from  e*  and Ar*.  This is of considerable practical 

importance;, since  e* and Ax* cannot be calculated beforehand. 

It is possible to give a detailed discussion of the difficulties 

caused in the Basic Computational Algorithm by "poor" choices of  e 

and A3,  but we shall limit the present discussion to a few general 

remarks. 

It is clear from the proof of the theorem that when e = e*,  any 

AD; < Az-*- will do; in fact, to every e,  0 < e < e*,  there exists 

A3f*(e),  0 < Aa:*(€) < Aa;*,  such that the Basic Computational Algorithm 

is well-defined and computationally finite when  e and Aa; are used 
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Solve (Po).  Put (x0,u0,S0) equal to a 
solution of (KT-l) through (KT-h)   at 0=0 

ft/ 
${ 
m 

ft/ 

Put (xJ-1V-±)=(xJ,uJ) 
Put J 

~t  
J+l 

Wo 

Choose step size Ace > 0 
Choose e > 0 
Put J = 0 

s jAa > 1? D 
Yes 

-> Terminate 

Iterate from (x ~ .,u ~ ) to 

(x ,u ),   the solution of 

(=S0)jAa; by Newton's method 

(S  IS   STILL    VALiD AT J^ot) 
"I Yes 

Write 
(x*(jAQ;),u*(jAa)) 

= (x ,u ) 

Is g.(xJ) > 0, Vi ^ 3°, and 
ui r: 0^ v i e s0? 

iNo 

Put A = [i: u^-1 > e} 

and B = {i: gi(x
J"1) < e} 

( S is  /Vor 
VALIO 

Put S 

J*" 
Choose S such that ACSCZB 
and S not tried before at the 
current value of J 

J-l J-l 
Iterate from (xu  ,uü'x) to (xd,uü), the 

solution of {=S  )j£a,   by Newton's method 

Yes Is  g.(x ) > 0, V   ± ^  S   j   and 

( THIS   TKIAL. WAS 
sotaessFUL; S is 
V«L)D    ^T   cr^oc ) 

-'i >—      — 

u^   > 0, V   i  e  S   ? 
No 

Figure  1 

Flow Chart  of the  Basic  Computational Algorithm 

(THIS  TRmt   WAS  /vor 
SOCCFSS^UL : £   /S  ^OT- 
V/9LI0 «T J-ZJ«) 

The notation used here is contradictory of that used elsewhere 

in this work:  (x,u)  actually means  (xSO(jm) ,uSO(j<Aa))  at 

Step 2j for example. 
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and A3 <A3!*(e).  Thus e and Aa; need not be exactly e*    and 

£a*     in order for the algorithm to he applicable.  In general^ however, 

the following qualitative assertions hold:  (a) when e is too small, 

there may be too few candidate sets at Step 3, i.e., there may be no 

set satisfying ACS C.B which is valid at J£a,  so that Step 3 

cannot be successfully completed; (b) when e is too large, there 

may be too many candidate sets at Step 5J resulting in an excessive 

number of trials before Step 3 is successfully completed and possibly 

in the break-down of Newton's method (lack of convergence or lack of 

existence of the required inverse matrix) for the trial sets which 

are not valid at J£a.    and do not satisfy the hypotheses of Corollary k.2 

applied at the point of change just before JAX;  (c) when Aa: is too 

small, the algorithm is applicable but requires more executions of 

Step 2 Increments in a,  thereby reducing the efficiency of the algorithm 

for a user who would be satisfied with knowing (x*(a), U*(Q:) )  for a 

coarser grid of values; and (d) when Aa: is too large, Newton's method 

is apt to be ill-defined, or divergent, or convergent to the wrong 

solution of  (=S)JAD;,  and it could happen that there is no set satis- 

fying ACZSCIB which is valid at JAa:,  so that Step 3 cannot be 

successfully completed. 

It is evident that  e and Aa; must be selected by trial and 

error.  A more powerful approach would be to modify e  and Aa; adaptively 

as the computations proceed:  one would provide for monitoring the number 

of iterations used by Newton's method each time it is employed and also 

the number of candidate sets at Step 3,   and the basic strategy would 

be to increase Ax and/or decrease  e when the algorithm is making 
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good progress and to decrease £a and/or Increase  e when the algorithm 

encounters difficulty.  Such an approach was applied successfully in the 

design of the machine code used to solve the parametric problem of 

Chapter IV. 

In addition to the possibility of increasing computational effi- 

ciency by adaptive selection of e  and Aa,  it is possible to greatly 

improve computational efficiency by using refinement, bordering, and 

partitioning methods for the inverse matrix required by Newton's method. 

A discussion of some of these devices is given in Appendix C.  These 

devices, or others like them, should be incorporated into any machine 

code for implementing the present algorithm , or the number of matrix 

inversions required would probably preclude the use of Newton's method. 

k.        Further Study of Step g 

Step 5 of the Basic Conceptual Algorithm involves a certain amount 

of trial and error:  at the point of change a',  try different sets 

S which are valid at a'      (i.e.,  Aa' CZ S QBD!')  until one is found 

which is valid to the right of a'.     When m'-ßa'     is a singleton, then 

no erroneous trials will be made at Step 5; for there are only two 

eligible sets, one of which was found at Step 2 not to be valid to the 

right of a'.  When Kc'-Aa'  contains many constraint indices, however, 

many unsuccessful trials may have to be made before a set which is valid 

to the right of a'  is found.  It is therefore of interest to appraise 

how serious a difficulty the trial and error nature of Step 3 is likely 

to be, and to consider some ways of ameliorating this potential stumbling 

block. 
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It is possible to argue heuristically that BCt'-Ao;',  which may be 

referred to as the set of degenerate constraints at a', will ordinarily 

consist of only one constraint.  Let a    e [0,1] be fixed, and assume 

that Conditions 1 through k  hold.  From the sufficiency of the Kuhn- 

Tucker Theorem, it follows that x*(a )  also is the optimum solution 
—  o 

to the problem 

Maximize  f(xja )  subject to  g.(x) > 0,  V i e Act 
x 

In other words, all constraints except those of Aa  are redundant. ' o 

The fact that some of them, namely those of Ba -Aa ,  happen to be 

exactly satisfied at x*(a )  can be viewed as an "accident."  It seems 

more likely that a redundant constraint will be slack at x*(a ),  as 

those of M-BQ!  are.  If a  is not a point of change, we conclude 
o o 

that  Ba -Aa  is likely to be empty  (B3 -Aa = 0  implies that there 
o  o o  o 

is exactly one valid set at a ).  The set  Ba; -Aa  is sure to contain J o o  o 

at least one constraint, however, when a,       is a point of change, for 

as a  traverses the unit interval continuity dictates that the only 

way a constraint can make the transition from slack to active or con- 

versely is to pass through Ba-Aa.  Unless there is strong interdependence 

between different constraints, not more than one or two constraints are 

likely to be involved in such a transition at any given point of change. 

Remark:  The last observation bringsup an interesting point regarding 

the testing of new mathematical programming algorithms.  Often 

a new algorithm is applied to a number of problems whose data 

were generated "randomly" in an effort to gain computational 
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experience quickly and to judge the efficiency of the algorithm. 

In our case this procedure would very likely lead to results 

biased in favor of our algorithm.  The reason^ of course, is 

that "interdependence" between constraints is less likely to 

occur when problem data are generated randomly than when problem 

data derive from real applications; the result is that Step 3 

will rarely require any erroneous trials for problems with 

randomized data. 

The above heuristic argument, although somewhat comforting, does 

not preclude the possibility of Ba'-ACC'  being quite numerous (by 

Condition h,     By,    can be composed of at most n constraint indices, 

and so Kt'-Aa'  could have up to  n constraints).  Faced with this 

possibility, one may follow two main courses of inquiry.  One may 

attempt to construct methods of perturbing  (Pa)  so as to ensure that 

Ba-Aa consists of only one or two constraints at each point of change 

(see Markowitz, 1956, p. 125, and Zahl, 196h,  p. 156).  Alternatively, 

one may attempt to devise rules for deciding in what order the trials 

should be made at Step 3 (the Basic Conceptual Algorithm is ambiguous 

in this respect) so as to tend to keep the number of erroneous trials 

small.  We choose to follow the second course of inquiry, because 

(a) this type of investigation is conspicuously lacking at present 

(for a notable exception in the context of a related problem see Theil 

and Van de Panne, i960), and (b) the second course of inquiry must be 

undertaken before the need for perturbation can be established. 
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!+.1 Preliminary Remarks on Determining the Order of Trials at Step 3 

We begin by establishing some terminology.  Suppose that Step 2 

has ended with the point of change a1 < 1.  Let a'+ be a point between 

a'  and the next largest point of change.  If S is valid at a'  but 

not at a'+,     the unique continuous solution of  (=S)a  satisfying the 

left end-point value  (x*(a'), u*(a'))  violates either (KT-3) or 

(KT-4); or possibly both, as a    increases above a' .  In other words, 

S  "causes an alarm"  as a    increases^' above a'.     A violation of 

(KT-3) is called a feasibility alarm, while a violation of (ZT-k)   is 

called an optimality alarm.  By continuity, the set of feasibility alarms 

must be contained in BX'-S,  and the set of optimality alarms must be 

contained in the set S-Aa';  hence all alarms are from m'-Aa'.     Since 

S  is not valid at a'+,  by Corollary 1.2 either  {S-]Ö'+} ^ 0 or 

[m'+  - S} ^ 0.  The set  S-Ba:,+ will be called the excess of S  at 

a'+,  and Aa'+ - S will be called the deficiency of S  at 0!' + . 

Clearly the smallest change in S which will result in a set which 

is valid at a'+  is to delete its excess and add its deficiency.  The 

number of constraint indices of [Pa'+ -   S] U{S-Ea'+]  is therefore 

a measure of the minimum distance,—/ which we denote by d(S),  between 

S  and the collection of all sets which are valid at «'+. 

27  since xS(a)  and uj(a)  are analytic functions, there is an  e > 0 

such that each component of  (g(xS(a),uS(a))  has constant sign on 

{a',a'+e).     It is in this sense that we define the alarms caused by 

S  "as a increases above a'." 

i2/ The distance between a set  C  and a set  D,  where  C  and D are 
both subsets of M,  can be defined as the number of elements m the set 
{C-D} U (D-C).  It is readily verified that this definition meets all of 
the usual requirements of a distance metric and hence makes a metric 
space out of the set of all subsets of M. 
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Figure 2 is designed to help the reader visualize the various 

sets mentioned above for a hypothetical case, and it will be convenient 

to refer to it occasionally during the rest of this section.  Each dot 

represents a constraint--fifteen in all.  The constraints in S are 

circled to distinguish them from the others.  Constraints 6,   Q,   and 

10 are labelled "g"  to signify that they are potential feasibility 

alarms  (KX'-S),  and constraints 7, 9,   and 11 are labelled "u"  to 

signify that they are potential optimality alarms  (S-Aa').  The 

deficiency of S at a'+    is precisely constraint 6, and the excess 

is constraint 11. 

Can one guess, by observing which feasibility and optimality 

alarms  S  causes as a increases above a', what changes can be made 

in S  in order for it to be valid at a'+?  It is tempting to con- 

jecture that any constraint (in S) which yields an optimality alarm 

should be deleted from S,  for it is well-known (e.g., see Wilde, I962) 

that a dual variable may be interpreted as giving the marginal decrease 

of the value of the objective function with respect to an increase in 

the "right-hand side" of the corresponding constraint.  Similarly, it 

is tempting to conjecture that any constraint (not in S) which yields 

a feasibility alarm should be added to  S  in order that it remain 

satisfied as a    increases above a'.  If this line of reasoning were 

correct, then by deleting the constraints which yield optimality alarms 

and adding those which yield feasibility alarms, one could obtain from 

S  a set which is valid at a'+j  for the optimality alarms would 

coincide with the excess of S  and the feasibility alarms would 
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coincide with the deficiency of S.  Unfortunately this is not the case, 

because the interactions "between constraints which are degenerate at 

a'     have heen ignored.  It is therefore possible to construct simple 

examples (see Appendix B) for which there are false and silent alarms. 

By a false alarm we mean a feasibility alarm which is not from the 

deficiency of S at a'+    and not from the set of degenerate constraint 

at a'+,     or an optimality alarm which is not from the excess of S 

at a'+    and not from the set of degenerate constraints at a'+.  By 

a silent feasibility alarm we mean the absence of a feasibility alarm 

from a constraint in the deficiency of S  at a'+,     and by a silent 

optimality alarm we refer to the absence of an optimality alarm from a 

constraint in the excess of S  at a'+.      In terms of Figure 2,   a 

false feasibility alarm would be an alarm from constraint number 10, a 

false optimality alarm would be an alarm from 7, a silent feasibility 

alarm would be the absence of an alarm from 6,   and a silent optimality 

alarm would be the absence of an alarm from 11.  Note that the alarms 

from the set of constraints which are degenerate at a'+{'Ea'+ -  Aa'+), 

if any, are immaterial— for the presence or absence of these constraints 

(numbers 8 and 9 in Figure 2) for a trial set does not affect its 

validity at a'+. 

The above remarks indicate that not very much information about 

what constitutes a valid set at a'+     can be gleaned from a trial which 

fails at Step 5.  Evidently the statement of Corollary 1.1 that 

AS' C Aa'+C Ba:'+CEa'  is about as strong a statement as can be made. 

As has already been pointed out, this is already a very strong statement 
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in the likely event that there are only a few degenerate constraints at 

a" .  Yet when a trial set fails at Step 3 there is one clue to the 

identity of a set which is valid at a'+    that can be salvaged:  at 

least one of the alarms given during a failure is from the deficiency 

or excess at a'+ of the trial set.  In the next subsection we shall 

prove this fact.  The result will then be used to devise an ordering 

of trials at Step 3- 

k.2    Sharpening Corollary 2.1 

Lemma 6.1: 

Let a'   e   [0,1]     be a point of change, let S  be valid at a', 

and assume that Conditions 1 through k  hold. 

Then there exists a convex set X' OX and an open interval 

containing and symmetric about a'  and contained in la'  such 
q 

that, for each fixed value of a    in this interval,  x (a)  is 

the optimal solution of 

Maximize  f(x;a) 
x e X 

subject to g.(x) = 0,  Vi e {S - S «} 

g. (x) > 0,  Vl e S a , 

where  S a C-U e S:  u. (a) > 0). 

Proof:  Arguing as in Proposition 3 and using the continuity of 

uS(a)  and the fact that u^a') = u*(a') > 0,  one obtains (here we employ 

~   2 m  S 
the notations of Proposition 3) that Max  I (A (f (xja) +^ u (a) g (x))) ^   M. x 1  i   -L 
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c 
is negative on X X a'  and continuous on some open region containing 

this direct product set.  By the compactness and convexity of XX a', 

it follows that the hessian of the Lagrangian function f(x;a) + 

m 
T; u.(a) g.(x)  is negative definite on some open convex region 
i 

X' X I'a'  containing X X «'.  In view of A.5^ the Lagrangian function 

must be strictly concave with respect to x on tlle 0Pen convex set 

X'  for each fixed value of a e I'a'. 

Now X^a') = x*(a') e X C.X', X' open; since x (a) is con- 

tinuous on Ta', one obtains that xS(a) e X' for all a sufficiently 

near a'. Since the gradient with respect to x of the Lagrangian 

function vanishes at x {a), we conclude by A.6 that x (a) is the 

global maximum of that function on the convex set X' for any fixed 

a sufficiently near a'. Using the fact that u^a) = 0, V i ^ S, 

and g.(xS(a)) =0, V i e S, one obtains, for any fixed a suffi- 

ciently near a',     that 

m  „ 
(IM        f(xS(a); a)  >  f(xja) +^ u?(a) g (x), v x e X' . 

1 

m  „ + 
Since ^ ub(a) g.(x) > 0 for all x  such that  gi(x) =0, Vie [S-S a], 

1  i    i 

4- 4- ^ 
and g.(x) >• 0, V i e S a,     where S.Ct C(i e S:  ^(a) > 0],  the 

conclusion of the lemma follows from (l^). 

Remark:  An easy proof of this lemma can be constructed from the Kuhn- 

Tucker Theorem when all constraints are linear; in this case 

X'  may be taken to be  En.  When all constraints are linear, 

specialization of the Kuhn-Tucker Theorem reveals that  (=S)a 

are necessary and sufficient conditions for a maximum of f(xjoO 

subject to g.(x) =0, V i e S. 
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Remark: The region X' may be taken to be contained in the open region 

mentioned in Condition 1. 

Theorem 6; 

Let a' e  [0,1]    be a point of change, let S be valid at a', 

and assume that Conditions 1 through h  hold. 

Then there exists an open interval containing and symmetric about 

a'     and contained in la'  such that, for each fixed value of a 

in this interval, the following three assertions are equivalent: 

(i)  S  is valid at a. 

(ii) (xS(a), uS(a)) = (x*(a), u*(a)). 

(iii) g.(xS(a)) > 0, Vie (Aa-S) 

uS(a) > 0, Vie Cs-Ba;}. 
i 

Proof:  The equivalence of (i) and (ii) and the fact that (ii) 

implies (iii) are known from Corollary 2.1.  To complete the proof of 

the theorem, it is sufficient to show that (iii) implies (ii) on the 

interval mentioned in Lemma 6.1. 

Assume that (iii) holds for some fixed value of a    in the interval 
O 

mentioned in Lemma 6.1.  Using the assumption that n±{a.)   >  0, 

V i e {S-ttü},  and applying Lemma 6.1 with S a = {S-Ba],  one may 

assert the existence of a convex set X'ZDX     such that x (a)  is an 

optimal solution of 

(15)     Maximize  f(x;a)  subject to g^x) =0,  V 1 e {EaOs} 
x e X' ,    , 

g.(x) > 0, V 1 e (S-Ba) . 
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c Using the assumption that g.(x (a)) > 0, Vie CAa-S], we have 

that x (a)  is feasible in 

(16) 

Maximize  f(x;a) 
x e X' 

subject to gi(x) = 0, V 1 e tons) 

g (x) > 0, Vie {S-Bcc] U ißa-Sl  . 

Since the feasible region of (l6) is Included in that of (15), 

x (a)  must be an optimal solution of (l6). 

It follows from A.k  and A.6 and the fact that  (x*(a), u*(a)) 

satisfies  (=Aa)a that x*(a)  is optimal In 

(17) Maximize  f(x;a)  subject to g.(x) > 0,  V i e Aa 
x e X' 1 

c Since the feasible region of (l6) is Included in that of (l?), and 

since x*(a)  is feasible in (l6),  x*(a)  must be optimal In (l6). 

That Is, both x*(a)  and x (a)  are optimal in (l6); thus 

f(x*(a);a) = f(x (a);«).  Because x (a)  is feasible in (l?), therefore, 

we finally have that x (a)  Is optimal in (17).  Since (17) must have 

a unique optimal solution by A. 2,  xS(a) = x*(d!). 'This Implies, by 

Condition k,   that u (a) = u*(a).  Thus (ii) holds. 

The significance of this sharpening of Corollary 2.1 is that 

It rules out the possibility that all alarms are either false or from 

the set of degenerate constraints at a'+ when S  is not valid at 

a'+.  That is, at least one alarm is from the deficiency or excess 

of S at a'+. 
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1|.3 Modification of Step 3--Determinlng the Order of Trials 

Suppose that Step 2 has ended with the point of change a' < 1. 

Designate the set of alarms which are given by S   (the set used 

during Step 2) as a increases above a'  by T.  Applying Theorem 6 

at a',  we know that at least one of the alarms is from the excess 

or deficiency of 3° at a'+.  Unfortunately, we do not know which 

one.  A logical way of proceeding at Step 5 is to modify S  by one 

constraint at a time for each constraint in T,  i.e., try the sets 

8° + i  for each i e T,  where the symbol S + i means S U i 

if  i ^ S0 and S0-i  if i € 3°.  This notation is designed to 

avoid having to distinguish between feasibility and optimality alarms. 

In other words, add the constraints which were feasibility alarms to 

3°  and delete constraints which were optimality alarms from S  one 

at a time until each alarm has been heeded individually.  Note that 

3° + i^  i e T,  is valid at a'  since all alarms caused by a set 

which is valid at a'  must be from Ba'-Aa".  Hence  S  + i,  i € T, 

satisfies (8.1). 

When T has been exhausted by this first generation of trials, 

at least one trial set, say 3° + i0,  is one unit of distance closer 

to a valid set at a'+.      If d(S0) = 1 then 3° + io  is valid at 

a'+  and Step 3 has been successfully completed.  If d(S ) > 1 then 

d(S0 + i ) = d(S0)-l > 0,  and a second generation of trials is 

necessary.  At each first generation trial, let  ^ denote the 

alarms due to 3° + i,  i e T.  At the second generation one should 

try 3° + i + j  for all i e T and all j 6 T^  The symbol 3° + i + j 
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means   CS0 +  i}U j     if     J^+i     and   {3° + i} -   j     If     JeS0+l.     Applying 

Theorem 6  at    a'     with     S =  S     + i   ^     we  see that  at  least  one  of 

the  alarms due to    S    + i       is  from the  excess  or deficiency of —    o 

3° + i  at a'+,  but we do not know which one.  Hence at least one 
— o 

of the sets  3° + i  + j,  j 6 T. ,  is one unit of distance closer to 
o 

a set which is valid at a'+.     Designate one such set by S  + ^o — ^o' 

If d(S0) = 2 then 3° + i  + j   is valid at CX'+,     and Step 5 has x — o — o 

( 

been successfully completed.  If d(S ) > 2,  then d(3 ±  i-0 t  30>   = 

d(S0)-2 > 0,  and a third generation of trials is necessary. 

The bhird generation of trials is constructed in a manner analogous 

to the preceding generations, and so on for the higher order generations. 

If at any trial a set is encountered which has been tried before, it 

may, of course, be discarded. 

At each generation the distance from some trial set, and perhaps 

several, to the collection of all sets which are valid at a'+  is 

decreased by one unit.  Since  d(S0)  is finite (in fact it is bounded 

by the number of constraints in m'-Aa'  minus the number of constraints 

in SJ,'+ -  Pa'+),     after a finite number of generations of trials a 

set which is valid at a'+ will be obtained--after exactly d(S ) 

generations, in fact.  The nearest valid set is, it will be recalled, 

3° plus its deficiency at a'+    minus its excess at a'+.  These rules 

are summarized below. 

Order of Trials at Step 3 
Q 

1.  Let  T denote the alarms which are given by 3   as a 

increases above a'.     At the first generation of trials. 
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try S0 + i for each i e T.  Let T.  denote the set of 

alarms which are given by 3° + i,  i e T,  as a increases 

above a'.  If T. = 0 for some i* e T,  then S + i* 
i ■  — 

is valid at «'+,  and Step 3 has been completed; otherwise^ 

go on to the second generation of trials. 

2.  At the second generation of trials;, try S + i + «3  for 

each i e T and all 3   £  T±.     Let T be the set of alarms 

which are given by S0+i+j,  ieT and 3   e T±,     as a 

increases above a'+.  If T. . = 0 for some  i* £ T and 

j* e T. ,  then 8° + i* + j*  is valid at 0C'+,     and Step 3 

has been completedj otherwise, go on to a third generation 

of trials. 

Etc.      (Omit'any sets which have been tried previously.) 

Since the only modification of Step 3 being suggested here is a 

more complete specification of the order in which the trial sets are 

to be considered, and since this order has been shown to lead to a 

successful completion of Step 3> the assertions of the Basic Theorem 

still apply to the Basic Conceptual Algorithm with Step 3 modified as 

above. 

If these rules are to be incorporated into the Basic Computational 

Algorithm, then in order to ensure that Theorem 6-and hence the above 

rules—applies, it is necessary to take Aa less than one-half the 

length of the smallest of the intervals of Theorem 6 applied at each 

point of change. 
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We do not hold that the order of trials suggested here is the most 

efficient order which carx te  devised.  However, the following advantages 

are to be noted: 

(1) Each unsuccessful trial helps to determine the order of 

successive trials. 

(2) The suggested order of trials always leads to the (unique) 

valid set nearest S . 

(5) A valid set is found after exactly d(S ) generations of 

trials. In this sense search termination is predictable, 

although not a priori so. 

(4)  S   is deformed one constraint at a time from trial to 

trial, so that the computational machinery is upset the 

least amount possible. 

5.   Some Extensions 

5.1  Linear Equality Constraints 

Let the constraints of  (Kx)  include some linear equality 

constraints.  It is clear that if each such constraint is written as 

a pair of inequality constraints (i.e., if the pair g.(x) > 0' 

-g.(x) > 0  is written in place of g.(x) = O),  then Condition k  never 

holds.  Fortunately, it can be shown that a simple modification of 

the Basic Conceptual Algorithm obviates this difficulty:  always include 

the linear equality constraints in S  at Step 2 and in the trial 

sets at Step 5 (ignore any opt'imality alarms that such constraints may 

give).  If all of the constraints happen-  to be linear equalities, in 

fact, Step 3 would disappear entirely. 
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5.2 More General Parametric Problems 

With appropriate modifications of the four conditions, it can be 

shown (Geoffrion, 1965) that many of the results of this chapter apply 

to any one-dimensional perturbation of 

1 

(Pp)        Maximize  f (x,p)  subject to g(xjP) ^ 9.  > 
~ x 

where the parameter p = (p^•••,Pk)  varies over a convex set P  in 

E
k
?  f(x,p)  is continuous in (x,p)  and strictly concave in x for 

each p e P,  and g^x.p)  (l = l,...,m)  is concave in (x,p).  By 

a one-dimensional perturbation of  (Pp)  we mean a parametric problem 

of the form 

Maximize  f^p" + a(p" - p')) 
x 

subject to g(x.P' + a(P" " 2'5) ^2 

for each value of a e [0,1]. where p1, p" e P. 

It is evident that  (Pp)  is general enough to include many of 

the parametric problems of interest to those who wish to perform 

sensitivity analysis on concave programming problems. 
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o CHAPTER IV 

An Illustrative Example 

c 

A simple model of a firm will be used to illustrate the manipu- 

lation and solution of a decision problem under uncertainty by means 

of the techniques presented in the preceding three chapters. 

1.   A Decision Problem Under Uncertainty 

Consider a hypothetical firm which produces and sells  n products 

in an imperfectly competitive market.  Assume that the cost of producing 

and selling each unit of product  1  is  c^  dollars per unit, and 

that the total dollar revenue accruing from the sale of x.  units of 

product  i  is  r.(x.) = (a +b ß-d )x + (d /k )-2.n(k x +l),  where 

a , d , k  are positive scalars,  ^n(-)  denotes the natural log, 
i  i  i 

and ß is a price index.  The interpretation of ^(x^  becomes clearer 

if one examines  dr.(x.)/dx. = a +b ß-d +d /(k x +l).  Since 
11       ^L       J-._L     J-, J- _L-^ 

dr   (0)/dx    =  a.+b.ß     and    dr.(c°)/dx.   =  a.+b.ß-d.,     we  see  that price 
ix'i ii ii ill 

gradually decreases from a.+b.ß  (notice the linear dependence on 

the price index) to a.+b.ß-d.  dollars per unit as production increases 

without bound.  The value of k.  determines the rapidity of the price 

decrease, and it is easily shown that a proportion 0 < t < 1 of the 

total possible price decrease  d.  is achieved at  xi = t/^-t)^. 

If we denote the (short-run) resource and other constraints 

(including x > 0)  by g(x) > 0,  then assuming that the firm can 

sell all it produces the profit maximization problem is 

n 
Maximize J)   {a.± + h±ß -  d^x.^ + (d^k^Mk^ + l) - c^ 

x     i=l 
(1) 

subject to g(x) > 0 . 
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We shall assume that all functions and coefficients are known except 

the price index ß, which will be regarded as a random variable with 

a known cumulative distribution function ${ß)• 

2.   Circumventing Uncertainty by a Vector Maximum Reformulation 

In order to circumvent the uncertainty attending the objective 

function of (l), we elect to employ one of the approaches considered 

at some length in Chapter I:  a vector maximum reformulation using 

the expected value criterion and the maximum .05-fractile criterion 

(some fractile other than the .05-fractile could be used if desired). 

Assume that *(ß)  is continuous, strictly increasing on the entire 

real line, and that its mean is zero (if the mean is not zero, it 

can be incorporated into the  a.).  One derives that the mean and 

.05-fractile of the objective function for fixed x  are, respectively. 

f^x) -  £ (a. - d. - c.)x. + (d./k.)to(k1x. + 1) 

> 0 

1=1 
/ 

f2(x) 
.-1, 

n 
f^x) + <l>-±(.05) E Vi if   £  Vi 

1=1 

.-1/ 
n 

f (x) + $"J-(.95) E b.x. if 2) Vi ^ 0 
1=1 

In place of (l) we consider the vector maximum problem 

(2) 

"Maximize"  ^(x),  f2W 

subject to g(x) > 0 

The efficient outcomes of (2) are to be computed and plotted (as in 

Figure 5 below) so as to present a "tradeoff curve" between the two 
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criteria.  A decision-maker then subjectively determines a point on 

the tradeoff curve, and implements the corresponding optimal production 

schedule. 

2 
5.  An Equivalent Parametric Programming Reformulation 

The hessian of f-^x)  is a diagonal matrix, with -k^/Cls^+l) 

on the diagonal.  When x > 0,  the assumed positivity of ^ and 

d.  implies that this hessian is negative definite.  By A.3, therefore, 

f (x)  is seen to be strictly concave on the non-negative orthant. 

An enumeration of cases shows that f2(x)  is also strictly concave 

on the non-negative orthant when *"1(.05) < 0 and $" (.95) > 0. 

In view of our assumption that the mean is 0,  it is reasonable to 

assume that this last condition holds.  Assuming further that each 

constraint function is concave, we conclude that Proposition 6 of 

Chapter II applies.^  Hence to find all efficient solutions of (2) 

it is equivalent to find the optimal solutions of 

Maximize  (l-dOf-^x) + Ctf^x) 
,   > x 
(3) 

subject to g(x) > 0 

for each value of Ct in the unit interval. 

Consider (3) with a    fixed.  The presence of the logical con- 

dition in the definition of t^    makes the solution of (3) somewhat 

1/ It is easy to see that Proposition 6 still holds if the  fi are 

assumed to be strictly concave on X,  and not necessarily on En. 
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awkward.  One approach is to solve the pair of problems 

I 

w 

Maximl djnize  (l-a)f (x) + alf^x)   + *" (.05) 2 ^i351!^ 
x 

subject to  g(x) > 0 

(5) 

Max 

V, b.x. > U      ii — 

imize  (l-dOf-^x) + «[^(x) + 'I'"1(.95) ^ b^] 

subject to  g(x) > 0 

7, b.x. < 0 . u      11 — 

The optimal value of (5) equals the larger of the optimal values 

of O) and (5), since the feasible regions of (k)   and (5) are merely 

a dichotomy of that of (5).  ¥e shall avoid this complication^ however, 

by requiring of our numerical example that b^ > 0  (i = l,...,ii); 

since x > 0,  this condition implies that £ b.x. > 0,  and therefore 

(3) may be rewritten as 

- 

(6) 

Maximize  (l-a)f (x) + a[ f (x) + 4" (.05) ^b^] 

subject to  g(x) > 0 . 

k.    .   Solving the Parametric Problem 

We shall solve a numerical example based on (6) with n =  h 

and m = 7.  Table 1 gives the numerical data for the objective 
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2/ 
function, and the constraints—' are: 

x. > 0,  i = 1, 
x — 

-.Olx  -.01x2 

A x1 -.h  x2 

, ^ 

■ .Ohx      -.OUx, + 2 > 0 

•. 1 x-, -. 1 x, + 20 > 0 

2      2 
.Olx^ -.OlXg ..oix: .Olx^ + 15 > 0 

1=1 i =  2 1 =  3 i =  ^ 

a. 
i 

10.0 12.0 10.5 11.0 

b. 
i 

0.063^ 0.0950 0.67^0 0.75^0 

c. 
i 

8.0 10.0 8.5 9.0 

d. 
i 

2.50 2.55 2.20 2.25 

ki 
0.12 0.13 0.0U5 0.050 

Table 1- 3/ 

It Is further assumed that ß is normally distributed with zero 

mean and unit variance.  Hence  $  (.05) = -1.6k. 

It Is clear, since  k.^b. > 0  (l = l,.,.,k),     "that t^   fg 

and g.  (1 = 1, ...,7)  are analytic on some open region containing the 

non-negative orthant.  Because the constraints are concave, therefore. 

-' Each x.  represents hundreds of units of product  i.  The last 

three constraints are to be interpreted as constraints on three 

resources, which we refer to as resources A, B, and C respectively. 

Resources are measured in thousands of units. 

-' The units of the coefficients are such that  f,  and fg are in 
thousands of dollars. 
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Condition 1 of Chapter III is satisfied.  Since resources are limited 

in all real problems of this type, Condition 2 is not restrictive, 

and in fact holds for the feasible region of our numerical example. 

It was observed above that the hessian of ^ is negative definite 

on the non-negative orthant, and the same is true for f2>     so that 

Condition 5 holds.  We shall not bother to verify whether Condition h 

is satisfied by our numerical example. 

A version of the Basic Computational Algorithm for solving (6) 

was coded for the Burroughs B5000 computer.  Ko attempt was made to 

optimize program efficiency beyond the incorporation of a simple 

variable step size feature (see the last two paragraphs of section 3, 

Chapter III).  The results of the computation are presented in 

Fibres 1, 2, and 3-  Figure 1 is a graph of the optimal production 

schedule,  x*(a^ as a function of a.  Note the markers at the 

following values for a,     each of which is a point of change marking 

an execution of Step 3=  0.602^ 0.7819, 0.8338.  Since no false or 

silent alarms are encountered at any of these points. Step 3 Is 

executed in each case with no erroneous trials.  Figure 2 presents 

graphs of u*(a)  and g^a))  (1=5,6,7)-  Note that the dual 

variables (or "shadow prices")  u^a)  (i = l,...^)  are not graphed, 

since they are identically zero on  [0,1],  and that it is not necessary 

to graph the non-negativity constraints.  Figure 3 is a plot of the 

efficient outcomes associated with the two criterion functions-a 

tradeoff curve.  It shows, for example, that production plan x*(0.80T) 

guarantees a profit of at least $32,700 with probability .95 and an 

expected profit of $79,100. 
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APPENDIX A 

Some Properties of Convex Sets and Concave Functions 

A set  S  in E  is said to be convex if  (Xx1+(l-X)x") e S 

whenever x',x" € S  and 0 < \ < 1. 

A function f(x)  which is defined on a convex set  S  is said 

to be concave if f (A.x'+(l-\)x") > \f (x')+(l-X)f (x")  whenever 

x',x" e S  and 0 < X < 1.  If the first inequality holds strictly 

whenever  x' ^ i"  and 0 < X < 1,  f(x)  is said to be strictly 

concave.  The function -f(x)  is said to be convex or strictly 

convex according as  f(x)  is concave or strictly concave.  When the 

convex set  S  is not specified explicitly, it is implicitly taken 

to be the entire space. 

The following properties of convex sets and concave functions 

are used in the text.  The proofs, most of which follow easily from 

the definitions, may be found in Fenchel (1953) or Zoutendijk (i960). 

A.l  If g.(x)  (i = l,...,m)  are concave functions on E , 

then  {x:  g.(x) > 0,  i = 1,...,m}  is a closed and convex 

set. 

A.2 Any local maximum of a concave function on a convex set is 

also a global maximum over that set; a strictly concave 

function can have at most one local maximum. 

A.3 A twice-differentiable function defined on a convex set  S 

is concave if and only if its hessian matrix is negative 
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semidefinite at each x e S.  If the hessian is negative 

definite at each x e S,  then the function is strictly 

concave (the converse is not true in general, but does 

hold when the function is a quadratic polynomial and S = E ) 

A.h    If f.(x)  (i = l,...,k)  are concave functions on a convex 

set  S,  and u. > 0  (i = l,...,k),  at least one ^ > 0, 
k       :L 

then y.   u.f.(x)  is concave on Sj  if f.(x)  is strictly 
Y  1 ! - 1 " k 

concave for some i  such that n± > 0,     then £ ^^(x) 

is strictly concave. 

A. 5 A concave or convex function on a convex set S is con- 

tinuous at every relative interior point of S. 

A.6 If f(x)  is differentiable and concave on a convex set S 

and V f(x0) =2^  x0 e S,  then f(x0) > f(x)  for all 

x e S. 

A.7  The Theorem of the Separating Hyperplane asserts that if 

S  and T are two convex sets in E  with no interior 

point in common, then there exist an n-vector v ^ 0 and 

a scalar  c  such that £. v^. < c < ^ v^  for all 

s  e  S,     t € T  (see Karlin, 1959, P- 398 for a proof). 
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APPENDIX B 

Graphical Examples 

We shall illustrate the Basic Conceptual Algorithm by considering 

three examples of the form 

(B.l) 

Maximize a^ -(x -c')  + (l-a) ^) -(xi - ci 
x       1 1 

J' 

t 
subject to ax + b^^^ > 0, 1=1, 

The first example is well-behaved in the sense that there are no 

false or silent alarms (see section k.l  for definitions of "false" 

and "silent" alarms), whereas in the second and third examples such 

troubles do occur. 

Problems of the form (B.l) are among the simplest which can be 

subsumed under the present theory:  both objective functions are 

quadratic and linearly separable, and the constraints are linear. 

The fact that false and silent alarms can occur for such problems 

seems to render unlikely the existence of a special class of  (Pa) 

for which false and silent alarms cannot occur. 

The examples to be given are presented and analyzed graphically 

rather than numerically because (B.l) is readily amenable to graphical 

interpretation when n=2  (the case considered here).  Let a be 

A f    t 
fixed.  When S  is a consistent set, i.e., when XQ  = lx:  a^ 

b. = 0, V i e S} ^ 0,  it follows from the Kuhn-Tucker Theorem that 

(=S)a is necessary and sufficient for a maximum of the objective 

function subject to x e Xq-  From the circulaxity of the level 
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s curves of this particular objective function it is evident that this 

constrained maximum is just the point of Xg nearest to the uncon- 

strained maximum X(Q;) = ac' + (l-a)c. 

Each figure is drawn in x-space  (n = 2)  with two constraints 

(m = 2).  The loci of g1(x) = 0,  B2(x) = 0,  the unconstrained 

maximum x(a),     and the constrained maximum x*(a)  (the heavy line) 

are drawn, as well as certain features pertaining to the points of 

change.  Light lines representing the projection of x(a)  onto the 

feasible region are also drawn; in view of the circularity of the 

level curves of the objective function for fixed OL,     these lines are 

in the direction of the gradient of the objective function at x*(a). 

The gradients of the constraints point into the feasible region. 

From (=S)a we see that the dual variables express minus the 

gradient of the objective function at x (a)  as a linear combination 

of the gradients of the constraints in S.  The signs of u^a) 

(i e S)  are easily determined by visual inspection of the figures. 

The first example is presented graphically in Figure B.l.  At 

a = 0 the unconstrained maximum x(0)  is interior to the feasible 

region.  Thus the constrained maxim-urn x*(0)  equals x^  and 

Bo = 0,  which implies that Ao = 0  since Aa CB3; for all a. 

We are obliged to let  3° = 0,  for the empty set is the only valid 

set at a = 0  (recall that  S  is valid at a if and only if 

ActdSCBCc).  Step 1 is complete.  Step 2 demands that we solve 

(=0)a as a increases above  0 until an alarm is given, i.e., 

until x^(a)  leaves the feasible region or u®(a)  becomes negative 
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for some  i.  The last alternative (an optimality alarm) cannot happen 

for 3° = t>,     for  (=0)0! requires uf (a) = 0.  Only the first alternative 

(a feasibility alarm) can occur.  Equations  (=0)a are easily seen 

A, , 
to be the conditions for an unconstrained maximum.  Since xl.Oj  is 

interior to the feasible region for  0 < a < Q^,  no alarms are given 

on [o.c^h (x^(a), u^o;)) = (x*(a), u*(a)) = (x(a),o) and Aa = Ea = 0 

on  [0,^) At a  the unconstrained maximum happens to be on the 

boundary of the feasible region, but beyond QL  it violates the first 

constraint, i.e.   (=0)a leads to a feasibility alarm for g.,  just 

above a .  Ihus a  is the point of change which completes Step 2, 

and (x^), u^)) = (x*(a1), u*(a1)) = (x(a1),o), Pa^  = <fj, 

Ba = (1).  Since a < 1,  we go to Step 5-  Two sets are valid at 

a :  0  and  {l}.  The former was seen at Step 2 not to be valid 

above a ,  and so the latter must be.  Control is now returned to 

Step 2 with 8° = (l). 

To execute Step 2 for the second time we must solve  (={l))a as a 

increases above QL  until an alarm obtains.  These equations are the 

conditions for a maximum of the objective function subject to the 

first constraint being exactly satisfied.  As a increases above 

a ,  x1(a)  moves along the portion of the boundary determined by 

the first constraint; since minus the gradient of the objective 

function at x (a)  is expressed as  U-^a)  times the gradient of 

g ,  it is geometrically clear that U-^Oi)  grows increasingly positive 

as a increases.  Hence no alarms are given until Op is passed, 

when the second constraint begins to be violated.  We have 
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x^a) = x*(a), u^(a) = u*(a) > o, U^Cü) = u|(a) = 0, Aa = Ba = fl} 

on  (a ,a ).  Since a < 1 is the point of change at which Step 2 

is completed, we go to Step 3.  Now kx    = (l)  and BCC = (l>2},  so 

that  {l}  and {1,2]  are valid at a ;  since the former was seen 

not to he valid just ahove a, ,     the latter must be.  Control is 

returned to Step 2 again, this time with S = [1,2). 

Step 2 now requires that  (={l,23)a be solved as a increases 

above ap until an alarm occurs.  These equations are the conditions 

for a maximum of the objective function subject to both constraints 

being satisfied exactly.  Since the intersection of the two equality 

1 2 
constraints determines a unique point, x ' (a)  is constant for all 

a.  The projection lines of xC0)  onto the feasible region and the 

1 2 interpretation of the dual variables make it clear that u ' (a) > 0 

on (a2,a ), u^2(cO = 0, Ug,2(a ) > 0, and u^2(a) < 0, 

1 2 
Up' (a) > 0 for o; > a,.  In other words, an optimality alarm occurs 

for the first constraint just above QL,  so that Step 2 is complete 

at that point of change.  Going to Step 3, we see that Aa = {2}, 

Ba, = {1,2};  since the latter is not valid just above a  the former 

must be.  Control is returned to Step 2 with S = {2}. 

At Step 2,  (={2])a must be solved as a.    increases above a,. 
3 

Reasoning as before, we see that  {2}  remains valid on  [cc ,1]. 

2 2 2 
Hence x (a) = x*(a),  Aa = BCC = {2},  u (a) = 0,  and u (a) > 0 

on  (a ,1]. 

This completes the solution of the first example.  A summary 

appears in Table B.l.  Note that there were no false or silent alarms, 

and no erroneous trials at any Step 3- 
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The second and third examples are presented graphically in 

Figures B.2 and B.3-  The summaries which appear in the corresponding 

Tables B.2 and B.3 can be constructed by following the lines of  ... 

reasoning illustrated in the above discussion of the first example. 

Nevertheless^ certain of the entries are reasoned out below.  The 

second example is designed to show that false feasibility and silent 

optimality alarms can occur^ the third to show that false optimality 

and silent feasibility alarms can occur. 

The second example is very much like the first., except that the 

unconstrained maximum happens to pass through the vertex of the feasible 

region.  At a = OL: x*{a )   =  x(a ),  Aa = 0,  and BCC = (1,2}. 

At Step 3 one must solve  (=S)a for a    just above a ,  S valid at 

a. ,     until a set which is valid just above QL  is found.  The four 

sets 0, {l}, [2],     and  {1,2}  are valid at a   .     If one tries 0, 

it is clear that xr{d)   = x(a)  violates both constraints as a 

increases above a  ,     and also that only  {2}  is valid just above 

QL .  Hence there is a false feasibility alarm for g ,  for g  is 

not in the deficiency of 0 and is not degenerate just above OL ■ 

See the second line of Table B.2.  If one tries  {l},  (={l})Q! are 

the conditions for a maximum of the objective function subject to the 

first constraint being exactly satisfied.  It is evident that x (a) 

violates the second constraint above a  ,     i.e. a feasibility 

alarm for  gp obtains.  Since minus the gradient of the objective 

function at x (a)  is expressed as u (a)  times the gradient of 

g ,  u (a)  is seen to be positive above QL .  Thus no optimality 
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alarm obtains for g , which means, in view of the unique validity 

of C2} above a      and the fact that g  is in the excess of  [1} 

just above a  ,     that  (=(l})a leads to a silent optimality alarm. 

See the third line of Table B.2. 

In the third and last example, the unconstrained maximum again 

happens to pass through the vertex of the feasible region.  At a = a , 

we have x*^) = xCcO,  Ax = 0,  and Ba = [1,2].     The valid sets 

at a,  are  0,  [l], [2],     and  (1,2}.  The only set which is valid 

just above CC  is  {2}.  If one tries  {l}  at Step 3,  x (a) 

evidently remains feasible.  Since g  is in the deficiency of  {1} 

just above a , we see that  (=(l})a leads to a silent feasibility 

alarm, as recorded in the third line of Table B. 5.  If one tries 

1 2 
{1,2}, x  '   (a)     must remain at the intersection of the two equality 

constraints.  It is graphically clear that minus the gradient of the 

1 2 
objective function at x ^ (a) = x*(a)     is represented by a negative 

linear combination of the gradients of the constraints as a    increases 

above a  ,     so that optimality alarms occur for both constraints. 

Since  g  is not in the excess of  {1,2}  and is not degenerate just 

above a ,  a false optimality alarm registers for the second con- 

straint.  See the fifth line of Table B.3. 

> 
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x*(a )  = x*(a ) 

SJ^J^H^)) 

yxg2(x*(a2))      x* 

(x) = 0 

Figure  B.l 

a 
Valid Sets 

at a:  S 

Feasibility and Opti- 
mal i.ty Alarms Due to 
S Just Above a 

Deficiency and 
Excess of S 

■ Just Above a 

Feasibility Optimality ; Deficiency Excess 

[o,^) 0         

al 

0 {1} None {1} None 

{1} None None None None 

ia1}a2) {1}     

a2 

[1} {2} None {2} None 

{1,2} None None None None 

(a2,a5) {1,2}         

a3 

{1,2} None {1} None {1} 

{2} None None None None 

(a5,i] {2}     

 _  

  

Table  B.l 
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Figure B.2 

a 
Valid Sets 

at a:  S 

Feasibility and Opti- 
mality Alarms Due to • 
S Just Above a 

Deficiency and 
Excess of S 
Just Above a 

Feasibility Optimality Deficiency Excess 

[o,a^ 0         

ai 

0 [l,2}i/ None {2} None 

{1} {2} 
2/ None—' {2) {1} 

(2} None None None None 

{1,2} None {1} None {1} 

(0^,1] f2}         

Table B.2 

1/ 

2/ 

False feasibility alarm for  g.. 

Silent optimality alarm:  no optimality alarm for u,. 
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a::-;-.:^Y.S-':,;-.v-^.rt'^.L: 

VxS2^K
)) 

x*(a ) E xia^)  =  X*(0) 

SJg {**{a)) 

x(l) 

Figure B. 5 

(x) = 0 

a 
Valid Sets 

at a:  S 

Feasibility and Opti- 
mality Alarms Due to 
S Just Above a 

Deficiency and 
Excess of S 
Just Above a 

Feasibility Optimality Deficiency Excess 

[0,0^) (1,2]         

ai 

0 (2) None {2} None 

(D None-' (D {2} (D 

12) None None None None 

[1,2] None [1,2)5/ None {1} 

(^,1] 12]         

Table B.5 

—'   Silent feasibility alarm:  no feasibility alarm for 

2/ False optimality alarm for up. 
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n APPEKDIX C 

Computational Devicet 

1. Newton's Method 

Newton's method is based on using successive linear approximations 

for solving systems of nonlinear equations when good first approxi- 

mations of the solutions are available.  In order to solve the system 

(C.l) 

f-^x) = 0 

f2(x) = Q„ 

■ 

f (x) = 0 , 
n —     ' 

where x  is an n-vector; Newton's method is the recursion 

-1 

(C.2) k+1   k 
x   = x 

öf.(xk) 

L. 
3 

f(x ),    k = 0, 1, 2, 

where x  is a given starting point.   The stated inverse must 

exist in order for (C.2) to be well-defined^ of course.  We denote 

the right-hand side of (C.2) by F(x ).  F(x)  is the iteration 

function obtained by applying Newton's method to (C.l). 

There are numerous versions of conditions under which Newton's 

method can be guaranteed to converge.  The following theorem is 

typical. 

«.» 

Theorem C.l I 

Assume that  f.(x)  (i = l,...,n)  is continuously differentiable 

on some neighborhood of x*^  and that the Jacobian   —,—'        does not 
d(xj 
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:,,.,.  ,   ....   . 

vanish at x*>  where  f(x-*) = 0.  Then Newton's method is well-defined 

and quadratically convergent to x*- if the starting point x  is 

in a sufficiently small neighborhood of x*. 

See Householder (1955.) P- 156) for a proof. 

Quadratic convergence of the sequence < x >  (k = 0,1^....) 

to x* means that (here  ||• ||  denotes the Euclidean norm) 

l|xk - x^|| 
lim  —;—= = = a constant *  0 . 

II k-1   „|(2 
k ^ «= ||x   - x*|| 

By way of contrast^ linear convergence would mean that 

II k   *ll ||x - x*|| 
lim  —:—= z  = a constant ^  0 . 

!      II k"1   ^11 k -* oo  ||x    - x*|| 

Evidently the quadratic convergence of Newton's method is a highly 

desirable feature.  The price one pays for it is the necessity of 

evaluating an Inverse matrix at each iteration,, and having to have 

a good starting point.  To ameliorate the first disadvantage, at some 

expense of speed of convergence, approximate inverses can be used. 

Often one can achieve a substantial net gain in computational efficiency 

by judicious application of this idea  (see, for example, Ostrowski, 

i960, and Householder, 1955:, P- 156). 

For the purpose of proving Theorems^. 1 and h-.2,   we find it more 

convenient to employ 
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Theorem C.2 

Let x* satisfy f(x*) = 0.  Assume that there exists a neigh- 

borhood N (x*)  on which the following three assertions hold: 

(a)  The functions  f.(x)  (i = l,...,n)  are twice con- 

tinuously differentiable. 

(b)  The Jacobian  ^-^ ^ 0. 
ö(x) 

(c) 
n / OF.(x)' 

2-il/2 

Si k\ ^ < L < 1. 

^ 

Then Newton's method (C.2) is well-defined and guadratically 

convergent to x* i?  t^e starting point x  is in W (x*). 

This theorem follows from results given in Householder (1953;, 

p. 135) and Henrici (1964, p. 101). 

Remark:  The square-root expression in (c) is an upper estimate of 

the Euclidean norm of the Jacobian matrix of F(x)  (see 

Faddeeva, 1959., P- 121). 

For reference we record the recursion equation of Newton's method 

applied to  (=S)a .  We have, for k = 0,1,2,... 

(C.3) 

«k+1  / 
x \     / x r„ > „f -1 

'Vx(f(^«) +£ u. g.(x)) 

(xT 

where  H =y  f(x;a) + ^ u. g.(x)|,  D is the matrix whose rows 

are \7g.(x)  (i e S),  and u  and g  are the vectors obtained 
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by deleting from u  and  g(x)  the components not in  S;  all quan- 

tities on the right-hand side are evaluated at a      and (x.u ) . 
o      --S 

Note that the equations u. = 0  (i ^ S),  which are a part of 

(=S)aoJ  have been omitted from the recursion because they are already 

solved. 

In order to have a compact notation for the square-root expression 

in (c) of Theorem C.2 specialized to  (=s)a ,  we denote by A(x,u: a ,S) 

the square-root of the sum of  the squares of all the elements of the 

Jacobian matrix of the iteration function appearing in (C.5) (i.e., of 

the Jacobian matrix of the right-hand side of (C.3) considered as 

a vector-valued function of  (x,u )). 

2.   Convenient Partitions of the Inverse Matrix Required by Newton's 

Method 

Let 
-1 

H 1 D r 

D 1 0 

be defined as in (C.j).  Under our conditions, it is easily verified 

that 

ich) 
H D*] 

-1 

_D 0 

H"1  -  ITVCDH-VTSH-
1

   !   H"1Dt(DH'1Dt)"1' 

(DH-Vr^H-1 ■(DH'V)"2 

Let there be  s  elements in S  (by Condition h,     s < n).  The 

inversion of the n+s by n+s matrix has been reduced to the inversion 

of two matrices, one n by n  (H)  and the other  s  by s  (DH- D ), 

and to several matrix multiplications. 
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v..^:::>s-;;vvr:.:;—:.j;;v;-.-.,.::\i?-...::v:- 

Whereas the size of H remains constant no matter what  S is, 

the dimension of DH~ D  does vary with S,  for during Step 5 rows 

are added to and deleted from D  as S  changes.  It is advantageous 

to use bordering methods to pass from an available  (DH D )    to 

the next when S is changed at Step 3-  We shall consider the case 

in which one row is added to "the bottom" of D,  and also the case 

in which the last row of D is deleted.  Results similar to the 

following can be derived to cover the addition or deletion of an 

arbitrary row, and also multiple additions and/or deletions. 

If one row d  is to be added to D,  then 

-1 
v-1 

1  +  1  +• 
ir^D1 ; d1] 

DH'V 

dH-V 

DH-V 

dH-V J 

["(DH-V)-1  + ^f 
dRd* 

Qd*     "I 

dRd* 

dQ* 

dRd* 
l/dRd* 

where Q = - (DH-V3) " "W"1  and R = H-1 - H'VCDH'V) "^H 1. 

Note that Q and R are immediately available from {C.k) 

Let D be written 

-1 t 1 
and let  (DH D )    be written 

^   2 T3-J 
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where T,  is 1 by 1 (i.e.,  T_ is a scalar).  If row d is deleted 
3 -> 

from D,  then  (D-,H"1Dir  = T - T T /T, 

5.   A Refinement Method for Approximate Matrix Inverses 

Suppose that  A is a square matrix whose inverse exists and is 

desired to be found, and that an approximate inverse B  is available. 

The error inherent in  B  causes the matrix I-AB  not to vanish. 

Xf_/  IJI-AB || < L < 1,  then the recursion 

B
k= Vl + Bk-l(l - ^k-l^    ^=1, 2, ... 

converges to A~ ,     and the considerable rapidity of the convergence 

is apparent from the estimate 

ÜB, - A"1!! < ÜB || L2k/(1-L) • 11 k     " — " o    ' 

See Faddeeva (1959, PP- 99-102) for further details on this 

method, which is due to H. Hotelling. 

It is clear that this device can be used to great advantage 

in maintaining an arbitrarily accurate approximation to H   as a 

increases (for the elements of H,  and therefore of H" ,  are con- 

tinuous functions of a on the unit interval), and also to 

It  1 (DH~ D )"   so long as  S  stays the same. 

—'   We define the norm  ||A11  of any n by n matrix A as 
n 

Max     2) la--I-  Other norms could be used, but this one (the 
1 < j < n  1=1  ^ 

so-called  "p = 1 norm") is particularly convenient for computational 

purpo s e s. 

15^ 
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q       q 
k.       Formulae for d(x (a), u (a))/da 

It may be shown by implicitly differentiating  (=S)Q! that the 

following additional conclusions can be added to Theorem 2:  for 

a e  la  , o 

d(xS(a))/da = - R^^U) -\Jx
£

2i*)) 

d(u^(a))/da = QC^^W "VX^^^ ' 

where R and Q are as in section 2 above and all quantities are 
q       q 

evaluated at  (x (a), u (a)). 
—        o 

These formulae are of possible interest for the purpose of 

facilitating the convergence of Newton's method, when fairly large 

step sizes are being used, by extrapolating to better starting points. 

Note that R and Q are immediately available from (C.U). 
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